Significance of Lanthanum Doping on Physical, Optical, Magnetic, and Dielectric Properties of CoAl$_{2-x}$La$_x$O$_4$ Nanoparticles

Abdel-Hamed A. Sakr*
*Physics Department, Faculty of Science, Damanhur University, Damanhur, Egypt.

In the present work, the effects of La$^{3+}$ substitution on structural, optical, dielectric, and magnetic properties of cobalt aluminates nanoparticles were investigated. (CoAl$_{2-x}$La$_x$O$_4$), in series 0.0 ≤ x ≤ 0.12, nanoparticles were successfully synthesized via co-precipitation method. X-ray powder diffraction was employed to verify the cubic spinel aluminate structure. Lattice parameter (a) was increased from 8.078 to 9.983 and X-ray density (ρ_{xray}) of the structure was increased from 4.489 to 4.532 with increasing the La$^{3+}$ content. Transmission electron microscopy analysis showed homogenous formation of the nanoparticles in a spherical shape, while functional analysis via FTIR indicated the presence of two main absorption attributed to the spinel aluminate. Optical properties of cobalt aluminates nanoparticles were investigated from results of optical absorbance spectra. Moreover, the increase in La$^{3+}$ content, is followed by an increase from 1.01eV to 1.60 eV in the optical energy gap E_{opt} and from 2.930 to 4.983 in the refractive index. This confirms the enhancement of density of the CoAl$_4$O$_9$ nanoparticles with rising La$^{3+}$ content. Results show an increase in the ferromagnetic behavior (superparamagnetic) with addition of La$^{3+}$ content which may be due to the formation of single domain particle of small particle size. The saturation magnetization increases from 0.736 to 2.314 emu$^{-1}$ as the contents of La$^{3+}$ increases in the spinel CoAl$_4$O$_9$. The impedance, dielectric constant, dielectric loss and loss tangent ($\tan \delta$) were found to be changed and improved with rising La$^{3+}$ content.

Keywords: Spinel aluminate, cobalt aluminates nanoparticles, dielectric properties, La$^{3+}$ substitution.

Introduction

For multiple optoelectronic and photonic device applications, Perovskite materials (PM) have recently emerged as a promising and effective low-cost energy materials [1]. The PM durability is due to the thermal and chemical stability [2]. These spinel aluminates nanoparticles have attracted much attention among nanomaterials because of its convenient for a wide range of applications including catalysis, ceramics, magnetic materials [3], and humidity sensor [4]. Spinels are a category of binary metal oxides having the general structural formula AB$_2$O$_4$, where A$^{n+}$ = a divalent cation such as Co, Ni, Mg, Cr, Mn, Cu, Fe, Zn etc. and B$^{m+}$ = a trivalent cation like In, Al, Ga, Ti etc. [2–4]. AB$_2$O$_4$ is the formula of Normal spinels where the divalent A cations occupy the tetrahedral sites and the trivalent B cations occupy the octahedral sites in a close-packed arrangement of oxide ions. A normal spinel can be represented as (A$^{n+}$)$_{a}$ (B$^{m+}$)$_{b}$ xO$_4$ and oxygen has fcc close packing arrangement [2-5]. Among the spinel aluminates, cobalt aluminate (CoAl$_2$O$_4$) is widely used as catalyst and color filter; it has good ultraviolet and visible light opacity, chemically inert, heat resistant, and stable to ultraviolet light [4–6].

The properties of nanomaterials depend on the composition, size, shape, size distribution, and preparation technique [7–11]. For
preparation of nano oxides, several techniques were used including sol-gel [12,13], ball milling, hydrothermally [14], and co-precipitation [15], which is the widely used technique in preparation of nano-crystalline due to its low cost and simplicity [8]. Both optical and magnetic properties of the nano-crystalline aluminates are highly dependable on distribution of cations between the A– and B– sites of the spinel structure. Several previous studies analyzed and tracked the effect of cations substitution in order to improve the dielectric, optical, electrical and magnetic properties of spinel aluminates [16-19].

This study focused on the effect of La\(^{3+}\) substitution on structural, morphological, magnetic, optical, and dielectric properties of CoAl\(_2\)La\(_{2x}\)O\(_4\) (0.00 ≤ x ≤ 0.12). Nano aluminates that were synthesized by co-precipitation method were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), Digital dielectric bridge (LCR), and vibrating sample magnetometer (VSM). Moreover, the optical and dielectric parameters have been also calculated and investigated.

Experimental Procedures

Co-precipitation method was employed in order to prepare CoAl\(_2\)La\(_{2x}\)O\(_4\) nanoparticles, with different La contents (0.00 ≤ x ≤ 0.12). Stoichiometric amounts of CoC\(_{12}\)6H\(_2\)O, LaCl\(_3\)6H\(_2\)O and AlCl\(_3\)6H\(_2\)O were obtained. Then, aqueous solutions of the above-mentioned chlorides were prepared. Continuous warming and mixing were carried out until the temperature reached 40 °C. At this point, 0.2 g of Poly(vinyl alcohol), known as PVA, dissolved in 20 ml of distilled water was added which disabled agglomeration of particles. Here, a precipitate is formed as soon as the NaOH solution is added. It is worth mentioning that NaOH solution is added dropwise with continuous stirring till pH of the solution escalated to 12. Simultaneous heating and stirring were done until finishing the addition of NaOH and till the temperature reached 60 °C. Maintaining this temperature (60 °C), we continued to stir for 2 hr. The precipitates are carefully washed with distilled water several times to ensure the removal of unwanted salt residues as well as the excess of NaOH making sure the precipitate becomes neutral (PH = 7). Once we reach this point in the experiment, the precipitate is dried to get rid of any remaining water contents. For 4 hr, the dried powder is calcined at 600 °C to obtain the nano-powder and to refine the crystalline properties.

The XRD for CoAl\(_2\)La\(_{2x}\)O\(_4\) nanoparticles was done in a Brucker-AXS D8 were advance powder diffractometer. Jeol transmission electron microscope (JEM- 2100-Jaban) was used to check the particle morphology. Using FTIR 8400S Shimadzu spectrophotometer, FTIR spectrum was recorded. The magnetic properties of CoAl\(_2\)La\(_{2x}\)O\(_4\) nanoparticles (0.00 ≤ x ≤ 0.12) were investigated by the vibrating sample magnetometer (VSM) (Lakeshore 7410). The dielectric properties of CoAl\(_2\)La\(_{2x}\)O\(_4\) nanoparticles were measured using the Digital LCR Meter (Hioki 3532–50) at 50 kHz to 5 MHz range.

Results and Discussion

X-ray diffraction

The XRD spectrum of CoAl\(_2\)La\(_{2x}\)O\(_4\) for a range between 0.00 ≤ x ≤ 0.12 nano-crystals are shown in Fig.1. All diffraction peaks that appeared indicate cobalt aluminate formation with the spinel cubic structure (JCPDS number 44-016) [19, 20]. This suggests the replacement of Al\(^{3+}\) ion by La\(^{3+}\) in CoAl\(_2\)O\(_4\) sample, [20, 21]. The important evidence of formation spinel phase can be assured by the incipient presence of (311) plane situated at 2θ = 37.2°, and it can also be confirmed by the visual observation of the blue color that distinguishes cobalt aluminum. The intensities of the (220) and (440) planes are more sensitive to the cations on tetrahedral, and octahedral, respectively [20]. Indeed, the Co\(^{2+}\) and Al\(^{3+}\) ions have a strong preference to occupy A and B sites, respectively [21]. The diffraction peaks at 2θ = 31.12 and 33.11, which were indexed as LaAlO\(_4\), for series with x ≥ 0.10 and implied that no more La cations could be accommodated in CoAl\(_2\)O\(_4\). In addition, weak diffraction peaks were observed when the La doped series have been compared to the undoped CoAl\(_2\)O\(_4\). The crystallinity degree of the cubic spinel aluminates could be assessed by main diffraction peak intensity at 311 plane. In addition, sample crystallization becomes more difficult with amorphous-like phases starting to appear by the gradual increase of La\(^{3+}\) content, as shown in Figure 1. This could be related to the high potential barrier of La\(^{3+}\) ion that is required to enter the spinel crystal lattice when increasing the dopant concentration. Additionally, the XRD peaks started to be weak and wide for the series with x = 0.10 and 0.12, which suggests a decrease in the crystallinity and crystallite size.
The lattice parameter $a = 8.059$ Å for undoped cobalt aluminates nanoparticles sample which are reported in Table 1, in agreement with that reported in the JCPDS card [21], and the value was increased to 8.109 Å by increasing La$^{3+}$content. The relationship between Lattice parameter a with lanthanum content was almost largely linear dependence since as lanthanum content increases, Lattice parameter a increases as shown in Fig. 2, and this obeys Vegard’s law [22], which indicates the formation of a homogeneous solid solution in all CoAl$_{2-x}$La$_x$O$_4$ (0.0 $\leq x \leq 0.12$) matrices annealed at 600 °C.

There was a decrease in magnetic ions release by increasing lattice parameter due to the increased content of lanthanum, due to the larger ionic radius of La$^{3+}$(0.615 Å) compared to that of Al$^{3+}$(0.53 Å). Such increased radius separates between the magnetic ions, causes an increased hopping length, or La$^{3+}$cations might enter into the octahedral sites replacing the Al$^{3+}$ cations, which could expand the unit cell [22]. It is observed that the X-ray density (d_{X-ray}) was increased with an increase of lanthanum concentration, which in turns increased the molecular weight (M_w) and that suppressed the increase of the lattice constant values. Both the strain ε and the average crystallite size (D) of the prominent peak at 311 reflection in accordance with modified Debye-Scherrer formula [21,22,23].

Results in Figure 3 showed the plot of $\beta \cos \theta$ versus $4 \sin \theta$ of CoAl$_{2-x}$La$_x$O$_4$ nanoparticles at x = 0.00, 0.04, 0.08, 0.1 and 0.12. Both the strain ε and the crystalline size were obtained from the slope and the intercept, respectively. The crystallite size was gradually decreased with the increase in La$^{3+}$ content (Table 1-a).

The distance between magnetic ions, (L$_g$ for tetrahedral (A) site and L$_n$ for octahedral (B) site) is known as length of jump/hopping ‘L’.

Theoretical density obtained from X-ray diffraction data d_{X-ray}, the specific surface area of the particles (S), which is the summation of the areas of the exposed surfaces of the particles per unit mass, bond lengths R_s and R_n. The oxygen positional parameter (U_o) and the polaron radius (r_p) for all CoAl$_{2-x}$La$_x$O$_4$ nanoparticles samples are calculated using the following relations [24,25,26]:

\[l_i = \frac{a_{exp} \sqrt{3}}{4} \quad \text{and} \quad l_i = \frac{a_{exp} \sqrt{2}}{4} \]

1-a

\[\rho_{exp} = \frac{8M}{N} a_{exp} \]

1-b

\[S = \frac{6}{D \rho_{exp}} \]

1-c

\[R_x = \frac{(u-1/4)}{4} a \sqrt{3} - r_o \quad \text{and} \quad R_B = (5/8 - u)a - r_o \]

1-d

\[U_o = \frac{1}{4} R_B^2 - \frac{2}{3} \left[\frac{11}{48} R_B^2 - \frac{1}{18} \right]^{1/2} \]

1-e

\[r_p = \frac{1}{2} \left[\frac{\pi}{6N'} \right]^{1/3} \]

1-f

where \(a_{exp} \) is experimental Lattice parameter, \(M \) is the molecular weight expressed in grams, \(a \) is the lattice constant and \(N \) is Avogadro’s number \((6.023 \times 10^{23} \text{ molecule} / \text{ mole})\). (D) Scherrer’s grain diameter of the spinel powders, \(R_B \), \(R_A \) are average bond lengths, \(R = R_B/R_A \) and \(N' \) number of sites per unit volume = \(96/a^3 \)

As seen from Table 1b the Probability of electron hopping between B and B sites is much more occurrence than A and B sites, since the values \(L_B \), is greater than that \(L_A \) [27,28]. This was evident from the values of Bond lengths \(R_B \) which more than the values of Bond lengths \(R_A \). Using the experimental values of lattice parameter \(a \), oxygen positional parameter \(u \) was calculated \((u=0.371 \text{ Å})\). The charge carriers are not completely free but are strongly localized may be due to formation of polarons, the values of polaron radius increased with increased of La\(^{3+}\) content.

Fig. 2. The dependence of crystallite size \((D)\) from Sherrer and lattice parameter \((a)\) on lanthanum \((\text{La}^{3+})\) content for CoAl\(_{2-x}\)La\(_x\)O\(_4\) nanoparticles.

The significance of lanthanum doping on physical, optical, and magnetic properties of CoAl$_{2-x}$La$_x$O$_4$ nanoparticles is studied.

<table>
<thead>
<tr>
<th>x</th>
<th>Lattice constant (d) (nm)</th>
<th>Scherrer equation</th>
<th>Williamsone Hall method</th>
<th>TEM D (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>80.78</td>
<td>28.50</td>
<td>44.73</td>
<td>0.33</td>
</tr>
<tr>
<td>0.04</td>
<td>80.84</td>
<td>20.46</td>
<td>42.02</td>
<td>0.13</td>
</tr>
<tr>
<td>0.08</td>
<td>80.93</td>
<td>19.102</td>
<td>33.82</td>
<td>0.57</td>
</tr>
<tr>
<td>0.10</td>
<td>80.97</td>
<td>14.50</td>
<td>25.21</td>
<td>0.49</td>
</tr>
<tr>
<td>0.12</td>
<td>81.00</td>
<td>14.13</td>
<td>24.33</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Fig. 3. Plot of $\beta \cos(\theta/s) = 4 \sin \theta$ for different La$^{3+}$ contents, $x=0.00, 0.04, 0.08, 0.10$ and 0.12.

TABLE 1.a. Lattice parameter (d) (α), average crystallite sizes (D), and TEM D of CoAl$_{2-x}$La$_x$O$_4$ nanoparticles ($0.00 \leq x \leq 0.12$).
TABLE 1.b. A-site jump length (L_a), B-site jump length (L_b), X-ray density (\(d_\text{x-ray}\)) and Bond lengths (RA, RB), and oxygen position parameter (u_o) of CoAl_{2-x}La_{x}O_4 nanoparticles (0.00 \leq x \leq 0.12).

<table>
<thead>
<tr>
<th>x</th>
<th>L_a (Å)</th>
<th>L_b (Å)</th>
<th>(d_{\text{x-ray}}) (g/cm³)</th>
<th>R_A (Å)</th>
<th>R_B (Å)</th>
<th>S (m²/g)</th>
<th>(r_p) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.498</td>
<td>2.856</td>
<td>4.489</td>
<td>1.611</td>
<td>1.882</td>
<td>46.898</td>
<td>0.7108</td>
</tr>
<tr>
<td>0.04</td>
<td>3.500</td>
<td>2.858</td>
<td>4.491</td>
<td>1.612</td>
<td>1.883</td>
<td>65.298</td>
<td>0.7113</td>
</tr>
<tr>
<td>0.08</td>
<td>3.504</td>
<td>2.861</td>
<td>4.501</td>
<td>1.614</td>
<td>1.885</td>
<td>69.785</td>
<td>0.7121</td>
</tr>
<tr>
<td>0.10</td>
<td>3.506</td>
<td>2.863</td>
<td>4.519</td>
<td>1.615</td>
<td>1.886</td>
<td>91.567</td>
<td>0.7125</td>
</tr>
<tr>
<td>0.12</td>
<td>3.507</td>
<td>2.864</td>
<td>4.532</td>
<td>1.616</td>
<td>1.887</td>
<td>93.696</td>
<td>0.7127</td>
</tr>
</tbody>
</table>

Morphology of nanoparticles using TEM
TEM Results showed the structure morphology for CoAl_{2-x}La_{x}O_4 at x = 0.00, 0.04, 0.1 and 0.12 as shown in Fig. 4a, 4b, 4c and 4d, respectively. TEM images revealed that the nanoparticles were approximately homogeneous in shape and size with pseudo-particles and spherical nanoparticles. Agglomerated nanoparticles are observed due to present of magnetic interactions between nanoparticles and heating the powder at 600 °C in air. Moreover, the degree of agglomeration was increased for higher additive of La³⁺ content which can attribute to increase in the strength of magnetic interactions among nanoparticles. The average grain size values are tabulated in Table 1-a. The current results from TEM were consistent with the results obtained from XRD measurements.

Fourier Transform Infrared (FTIR) Analysis
FT-IR spectra of the as-synthesized CoAl_{2-x}La_{x}O_4 (0.00 \leq x \leq 0.12) nanoparticles in the range of 300–4000 cm⁻¹ (Figure 5) is essential to describe both ion vibration mode and deformation of the spinel structure. FTIR spectra would explain the nature and strength of chemical bonds that can be formed or disappear in prepared samples as a result of addition of La³⁺ content, were recorded. It was reported that the formation of spinel aluminates was confirmed by the existence of the main absorption band \(u_1\) and \(U_2\), in the wavelength wavenumber ranged from 550 to 700 cm⁻¹ in all samples [26].

The highest band \(u_1\), observed around 660 cm⁻¹, that could be attributed to intrinsic stretching vibrations of metal at the tetrahedral site, whereas the \(u_2\) lowest band, observed around 550 cm⁻¹, which may be corresponded to octahedral-metal stretching. The \(u_1\) and \(u_2\) bands are due to Al³⁺ -O²⁻ complexes present at A and B-sites as a result of the formation of aluminite spinel. The Co²⁺ ions occupy mainly the octahedral sites and fraction goes into tetrahedral sites [27,28]. Change in the La³⁺ content effected the intensities and positions of the absorption bands \(u_1\) and \(u_2\).

However, the broad bands appeared around 3450 and 1640 cm⁻¹ could be a result of hydrogen bonding O–H [27]. The common band appeared at around 2426 cm⁻¹ might be resulted from passing the IR beam through air [28].

It was observed that the position of bands for the substituted samples were shifted to lower values of wavenumber in respect to the observed samples for the as-prepared sample (Fig. 5). This might be attributed to the presence of La³⁺ cations on the octahedral (B) sites because of its higher atomic weight and larger ionic radius than Al³⁺ cations, which might have an effect on Al³⁺–O²⁻ distances on B-sites.

UV-Vis Spectroscopy
UV-vis spectra from CoAl_{2-x}La_{x}O_4 nanoparticles were recorded using an UV–visible spectrophotometer (Fig. 6-a). An absorption band were observed around 200nm in the ultraviolet (UV) area and a strong two absorption peak at 450 and 680 nm, which confirmed the existence of tetrahedral Co²⁺ cations in the CoAl_{2}O_4 spinel [1,5].

Fig. 4. TEM for CoAl_{2-x}La_xO_4 nanoparticles, (a) X = 0.00, (b) X = 0.04, (c) X = 0.10 and (d) X = 0.12.

Fig. 5. FT-IR pattern of as-synthesized CoAl_{2-x}La_xO_4 nanoparticles with different La^{3+} content (0.00 ≤ x ≤ 0.12), annealed at 600 °C.
The blue shift in the absorption band edge wavelength \(\lambda_E \) (nm) might be affected by the crystallite and the particle size [27]. The change in the coordination state of Co\(^{2+}\) ion (from octahedral to tetrahedral) resulted in the observed shift in the absorption peak. The absorption coefficient \(\alpha \), which is proportional to the Kubelka–Munk function is given by [27].

\[
\alpha(\omega) \approx h F(R) = h \alpha_0 + \frac{h\omega}{\Delta E_u} \tag{2-a}
\]

where \(F(R) = \frac{(1-R)^2}{2R} \), \(R \) is reflectance (%), \(\alpha_0 \) is constant and \(\Delta E_u \) is the width of the band tail of localized states in the normally forbidden band gap (Urbach energy). According to the Tauc’s relation [28], the absorption coefficient near the fundamental edge can be calculated according to the following equation.

\[
\alpha \omega = B(h\omega - E_g)^m \tag{2-b}
\]

where \(B \) is an energy-independent constant, \(E_g \) is the optical band gap energy, \(h \) is the Planck’s constant, \(\omega = 2\pi n \) where \(n \) is the frequency of the incident photon, where \(n \) is an index determined by the nature of the electron transition during the absorption process, \(m \) may have values 1/2, 3/2, 2 and 3 for direct allowed (\(E_g \)), direct forbidden, indirect allowed (\(E_{\text{opt}} \)) and indirect forbidden respectively. The absorption peak shifts towards the blue region as the coordination geometries of Co\(^{2+}\) ion changed from the octahedral to the tetrahedral coordination.

As shown in Figures 6 (a), 6(b), 6(c) and 6 (d) the absorption band edge wavelength \(\lambda_E \), Urbach energy \(\Delta E_u \), direct (\(E_g \)), and indirect (\(E_{\text{opt}} \)) optical band gap energies can be calculated and listed in Table 2. Urbach energy \(\Delta E_u \), decreases with increasing La\(^{3+}\) content, this may be due the decrease in the width of localized states in the optical band. The increase in optical energy band gap could be because of the decrease of the particle size and the decrease of density of localized state in the conduction band [27,29].

![Fig. 6. Optical properties of CoAl\(_{2-x}\)La\(_x\)O\(_4\) (a) UV–Vis spectra, (b) Urbach plots, (c) Plots of (\(\alpha h\omega \))^2 vs. \(h\omega \) and (d) Plots of (\(\alpha h\omega \))^2 vs. \(h\omega \).](image-url)
The refractive index \(n \) can be determined from the optical band gap \((E_{opt}) \) according to the empirical relation

\[
\frac{n^2 - 1}{n^2 + 2} = 1 - \sqrt{\frac{E_{opt}}{D}}
\]

(3)

As shown in Table 2, the increase La \(^{3+}\) content, the increase the refractive index values which confirms the enhancement of density of the CoAl\(_2\)O\(_4\) nanoparticles with rising La \(^{3+}\) content.

Magnetic Measurement

For accurate study and understanding, the effect of the size of CoAl\(_{2-x}\)La\(_x\)O\(_4\) nanoparticles, on the magnetic properties, magnetization measurements were carried out on a vibrating sample magnetometer with a maximum applied field of ±20 kG at room temperature. As shown in magnetic hysteresis \((M - H)\) curves in Fig. 7. From these curves, the saturation magnetization \((M_s)\), coercivity field \((H_c)\), squareness ratio \((S)\) and the magnetic moment \((\mu_m)\) and remanence magnetization \((M_r)\) were obtained and were given in Table 3. For undoped sample, a small hysteresis was observed indicating a weak ferromagnetic nature of the material, due to the formation of a single ferromagnetic domain which is preferred in smaller particles. Moreover, a stable bulk magnetization cannot be established due to thermal fluctuations acting on small particles and consequently the system exhibits super paramagnetism [30].

TABLE 2. Absorption band edge wavelength \(\lambda (\text{nm}) \), direct, indirect optical band gap and Urbach energy \(\Delta E_u \) of CoAl\(_{2-x}\)La\(_x\)O\(_4\) nanoparticles.

<table>
<thead>
<tr>
<th>X</th>
<th>lg(eV)</th>
<th>(E_{opt}^d) (eV)</th>
<th>(E_{opt}^i) (eV)</th>
<th>(E_{opt}^{\Delta E_u}) (eV)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>285</td>
<td>3.85</td>
<td>1.60</td>
<td>1.024</td>
<td>2.934</td>
</tr>
<tr>
<td>0.04</td>
<td>282</td>
<td>3.60</td>
<td>1.41</td>
<td>0.976</td>
<td>3.049</td>
</tr>
<tr>
<td>0.08</td>
<td>258</td>
<td>3.25</td>
<td>1.25</td>
<td>0.587</td>
<td>4.983</td>
</tr>
<tr>
<td>0.10</td>
<td>240</td>
<td>3.90</td>
<td>1.46</td>
<td>0.553</td>
<td>2.577</td>
</tr>
<tr>
<td>0.12</td>
<td>232</td>
<td>3.35</td>
<td>1.01</td>
<td>0.724</td>
<td>3.369</td>
</tr>
</tbody>
</table>

Fig. 7. M-H curves of CoAl\(_{2-x}\)La\(_x\)O\(_4\) nanoparticles.
TABLE 3. Saturation magnetization (M_s), coercivity field (H_c), squareness ratio (S), remanence magnetization (M_r) anisotropy constant (k), and magnetic moment (μ_m) for CoAl_{3-x}La_xO_4 nanoparticles, (0.00 ≤ x ≤ 0.12).

<table>
<thead>
<tr>
<th>x</th>
<th>Ms (emu/g)</th>
<th>M_x 10^2 (emu/g)</th>
<th>Squareness ratio</th>
<th>H_c (G)</th>
<th>Anisotropy parameter K</th>
<th>μ_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.736</td>
<td>4.30</td>
<td>0.058</td>
<td>174.64</td>
<td>128.472</td>
<td>0.023</td>
</tr>
<tr>
<td>0.04</td>
<td>2.000</td>
<td>11.50</td>
<td>0.057</td>
<td>78.464</td>
<td>156.959</td>
<td>0.064</td>
</tr>
<tr>
<td>0.08</td>
<td>1.132</td>
<td>11.20</td>
<td>0.099</td>
<td>197.36</td>
<td>223.490</td>
<td>0.036</td>
</tr>
<tr>
<td>0.1</td>
<td>1.010</td>
<td>9.49</td>
<td>0.093</td>
<td>193.37</td>
<td>195.245</td>
<td>0.033</td>
</tr>
<tr>
<td>0.12</td>
<td>2.314</td>
<td>10.20</td>
<td>0.044</td>
<td>60.483</td>
<td>139.969</td>
<td>0.076</td>
</tr>
</tbody>
</table>

The ferromagnetic behavior of nanocrystalline sample is due to change of cation distribution with decrease of particle size which leads to a reduction in ligand field strength [30, 31]. If all divalent cations occupy all the tetrahedral sites, then the material is a normal spinel. If all the divalent cations occupy all the octahedral sites, then it is an inverted spinel and if the divalent cations are distributed among both the tetrahedral and octahedral sites, the material is a partially inverted spinel. Therefore, in CoAl_{3-x}La_xO_4 nanoparticles, some of Li^{2+} cations occupy the tetrahedral (A) sites, which switch on the A–B superexchange interaction and give rise to a ferromagnetic behavior.

From Table 3, we can observe that the saturation magnetization increases from 0.736 to 2.314 emu/g as the contents of La^{3+} increases in the spinal CoAlO_4. This may be due to the zero magnetic moment of Al^{3+} cations which are partially replaced by the larger magnetic moment of La^{3+} cations (4.0 μB) in the octahedral site [30]. The magnetic moment (μ_m) per unit formula in Bohr magneton was calculated from saturation magnetization by using the following formula:

$$\mu_m = \frac{M_w M_s}{5585}$$ \hspace{1cm} (4)

Where: μ_m is the magnetic moment, M_w is the molecular weight, M_s is the saturation magnetization and the factor 5585 is a magnetic factor.

The deviation of squareness ratio S in CoAl_{3-x}La_xO_4 nanoparticles from typical single domain isolated ferromagnetic particles ($S \approx 1$) may be construed to the interactions among grains, which are affected by core-shell structure of grains and grain size distribution in the material. Both the particle size and crystal morphology have important effects on the magnetic property [30, 31].

Dielectric properties

The dielectric properties of CoAl_{3-x}La_xO_4 nanoparticles are measured in the frequency range of 42 Hz to 5 MHz at room temperature. The complex impedance Z , the real (ε') and imaginary (ε'') parts of dielectric constant, ac conductivity (σ), dielectric loss ($\tan \delta$) and the real M' and imaginary M'' parts of modulus are calculated using the following relations:

\begin{align}
Z &= Z' - j Z'' , \quad Z' = Z \sin \varphi , \quad Z'' = Z \cos \varphi \\
\varepsilon' &= \frac{Z''}{2\pi f |Z|^2 C_0} \quad \text{and} \quad \varepsilon'' = \frac{Z'}{2\pi f |Z|^2 C_0} , \\
M' &= \frac{\varepsilon'}{\varepsilon' + \varepsilon''} \quad \text{and} \quad M'' = \frac{\varepsilon''}{\varepsilon' + \varepsilon''} , \\
\varepsilon &= \varepsilon_s - \tau (\varepsilon' \omega) \quad \text{and} \quad \varepsilon' = \varepsilon_s + (1/\tau)(\varepsilon''/\omega) , \\
\tan \delta &= \frac{Z'}{Z''} = \frac{\varepsilon'}{\varepsilon''} , \\
\sigma &= 2\pi f \varepsilon_s \varepsilon' \tan \delta
\end{align}

Where \(C_0 = \varepsilon_0 \frac{A}{d} \) is the air capacity, \(A \) is cross-sectional area, \(d \) is the thickness of the pallet, \(\varepsilon_0 \) is the permittivity in free space, \(\phi \) is the phase angle, \(t \) is the relaxation time, \(\varepsilon \) and \(\varepsilon_{\infty} \) are the dielectric constant at very low and very high frequency, respectively.

The real (\(\varepsilon' \)) and the imagine (\(\varepsilon'' \)) parts of relative permittivity in the frequency range of 40 Hz - 5 MHz of CoAl\(_{2-x}\)La\(_x\)O\(_4\) nanoparticles at room temperature was shown in Fig. 8 (a) and (b). The value of dielectric constant is higher at lower frequencies and decreases with increasing frequency. This is attributed to the decrease of the permanent dipoles as the frequency increases [31,32].

![Fig. 8](https://example.com/fig8.png)

Fig. 8. Variation of (a) \(\varepsilon' \), (b) \(\varepsilon'' \), (c) \(\tan \delta \), and (d) AC conductivity (\(\sigma_{ac} \)) with the frequency (in frequency range from 40 Hz to 5 MHz) for CoAl\(_{2-x}\)La\(_x\)O\(_4\) at room temperature. (e) The variation of \(\varepsilon' \) with \(\varepsilon''/\omega \). (f) The variation of \(\varepsilon' \) with \(\varepsilon''/\omega \). The inset of figures e and f show the calculated \(\varepsilon_s \), \(\varepsilon_{\infty} \), and \(\tau \).
It is clear from Fig. 8 (a), that the values of ε' increases with increasing La $^{3+}$ content in CoAl$_2$La$_x$O$_4$ nanoparticles. The value of dielectric constant is mainly attributed to an internal barrier layer capacitor (IBLC) model, where grain boundaries act as insulating wall. Meanwhile, another reason is related the decrease in grain size and increasing the surface area of nanoparticles leads to an increase in the number of electric dipoles on the surface which will also contribute to the polarizability of material. Figure 8 (c) shows the variation of tan δ with frequency. It is observed that at lower frequencies the value of tan δ is high and decreased rapidly with the increase in frequency.

The dielectric constant and the dielectric loss are due to the combined effects of: (a) crystal structure perfection, (b) microstructure (porosity), (c) chemical homogeneity and (d) the amount of La$^{3+}$ in the sample. The dominance of each factor varies with the composition of the sample. The dielectric loss arises due to the lag of the polarization behind the applied alternating electric field and is caused by the impurities and imperfections in the crystal lattice [31,32].

As shown in Fig. 8 (d), the total conductivity of a material can be expressed by the relation $\sigma_{total}=\sigma_{dc}(T)+\sigma_{ac}(\omega, T)$, where $\sigma_{dc}(T)$ is the frequency independent dc conductivity contributed by band conduction and the $\sigma_{ac}=(A\omega^s)$ is frequency dependent ac conductivity contributed by hopping charge carriers. A is dependent on temperature and indicates the strength of polarizibility and exponent s is the degree of interaction of mobile ions with lattice. The coefficient A and the exponent s are temperature and material intrinsic property dependent [33]. The values are reported in Table 4.

The increase in the value of electrical conductivity with frequency may be due to hopping mechanism [39]. The hopping within ions in B-site increases with frequency. Moreover, the conduction can attribute to the free-charges that released from distinct trapping centers. Thus, increasing in ac-conductivity (σ_{ac}) with La$^{3+}$ content (except x= 0.08 and x=0.12) is due to the increasing in grain boundaries at the expense of decreasing in grain size, resulted in the electronic state near to Fermi level is localized. Therefore, the conduction mechanism must become dominated by hopping between localized states. The decrease in the ac conductivity of composites x=0.08 and 0.12 is due to the substitution of Al$^{3+}$ with La$^{3+}$ which increases the concentration of La$^{3+}$ ions at B-site, where the high concentration of La$^{3+}$ ions Reduce and resist the electron hopping causing a decrease in the conductivity.

Figure 8 (e) and (f) show the variation of ε' with (ε''/ω) and ($\varepsilon''\omega$), the values of ε_s and $\varepsilon_{\varepsilon}$ can be calculated and listed in table 4. High dielectric constant and low dielectric loss for the samples x=0.1 and x=0.12 makes these materials good for energy storage at high frequencies such as in supercapacitors. Grain resistance R_g, grain capacitance C_g, grain boundary resistance R_{gb} and grain boundary capacitance C_{gb} are calculated using the following relations:

\[
\varepsilon_{c} = \frac{1}{c_{c}} \left(\frac{1}{C_{g}} + \frac{1}{C_{b}} \right) \quad \text{and} \quad \varepsilon_{s} = \frac{R_{g}^{2} c_{g} + R_{b}^{2} c_{b}}{C_{g}(R_{g} + R_{b})^{2}}
\]

\[
\sigma = \frac{1}{C_{g}(R_{g} + R_{b})} \quad \text{and} \quad \tau = \frac{R_{g} R_{b} (c_{g} + c_{b})}{(R_{g} + R_{b})}
\]

Since the resistance of grains R_g is small relative to that of grain boundaries R_{gb} ($R_{gb} \gg R_g$) and also grain boundary capacitances C_{gb} is greater than grain capacitances C_g ($C_{gb} \gg 10C_g$) [35-36], so equations (5-g) and (5-h) can be simplified to $\varepsilon_s \approx \frac{c_{g}}{C_{g}}$ and $\tau \approx R_{gb} c_{b}$ respectively, the values of R_{gb} and C_g were calculated and listed in Table 4.
TABLE 4. The Dielectric constant at low frequency (ε_l) and high frequency (ε_s) and the relaxation time τ(sec) as a function of La$^{3+}$ content for CoAl$_{2-x}$La$_x$O$_4$.

<table>
<thead>
<tr>
<th>X (content)</th>
<th>s</th>
<th>τ(sec) x 10$^{-2}$</th>
<th>ε_l</th>
<th>ε_s</th>
<th>R_s</th>
<th>C_s X 1012</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3315</td>
<td>13.025</td>
<td>130.25</td>
<td>52.32</td>
<td>56706.247</td>
<td>1.153</td>
</tr>
<tr>
<td>0.04</td>
<td>0.4915</td>
<td>7.446</td>
<td>145.21</td>
<td>114.96</td>
<td>48805.217</td>
<td>1.285</td>
</tr>
<tr>
<td>0.08</td>
<td>0.439</td>
<td>7.681</td>
<td>107.53</td>
<td>92.53</td>
<td>66434.751</td>
<td>0.9516</td>
</tr>
<tr>
<td>0.10</td>
<td>0.0736</td>
<td>9.011</td>
<td>177.52</td>
<td>155.21</td>
<td>46053.217</td>
<td>1.571</td>
</tr>
<tr>
<td>0.12</td>
<td>0.3635</td>
<td>8.656</td>
<td>120.32</td>
<td>97.87</td>
<td>66498.753</td>
<td>1.065</td>
</tr>
</tbody>
</table>

Conclusions

A series of La$^{3+}$ cations substituted cobalt aluminates nanoparticles with an average size in the range of 13-58 nm were successfully synthesized by using a simple co-precipitation method. The crystal structures of all cobalt aluminates CoAl$_{2-x}$La$_x$O$_4$ (0 ≤ x ≤ 0.12) nanoparticles samples are cubic spinel. The substitution of La$^{3+}$ cations in cobalt aluminates have significant impact on the change and development of crystal structure, morphologies, dielectric, optical and magnetic properties. The XRD analysis confirmed the single-phase cubic spinel structure. The variation of lattice parameter (a) and crystallite size (D) with La$^{3+}$ content for CoAl$_{2-x}$La$_x$O$_4$ nanoparticles is linear. The increase of lattice parameter with La$^{3+}$ content, obeying Vegard’s law. The magnetic ions in cobalt aluminates nanoparticles substituted with La$^{3+}$ cations far to each other and the hopping length increase, due to the larger ionic radius of La$^{3+}$ (0.615 Å) than that of Al$^{3+}$ (0.53 Å). There is a high degree of agreement for values of the crystallite size of CoAl$_{2-x}$La$_x$O$_4$ (0.0 ≤ x ≤ 0.12) nanoparticles which calculated from Scherrer formula and Williamson–Hall method and that from TEM. By analyzing TEM images, we have demonstrated the formation of spherical nanoparticles, homogeneous in shape and size. The results of the FTIR spectra showed that there are two main absorption bands which are characteristic of spinel aluminate in the wavelength range 550–700 cm$^{-1}$. The optical properties of CoAl$_{2-x}$La$_x$O$_4$ nanoparticles have been investigated. Absorption band edge wavelength λ (nm), indirect optical band gap and Urbach energy DE$_o$ of CoAl$_{2-x}$La$_x$O$_4$ nanoparticles decrease with the increase La$^{3+}$ content, while the refractive index values increase which confirms the enhancement of density of the CoAl$_2$O$_4$ nanoparticles with rising La$^{3+}$ content.
The results from magnetic hysteresis (M-H) loop showed that in CoAl$_{2-x}$La$_x$O$_4$ nanoparticles, some of Li$^{3+}$ cations occupy the tetrahedral (A) sites, which switch on the A–B superexchange interaction and give rise to a ferromagnetic behavior. The addition of La$^{3+}$ content enhances the dielectric properties. The relaxation time τ (sec) for all La$^{3+}$ cations substituted cobalt aluminates nanoparticles, were greater than for CoAlO$_2$ sample which confirmed the effects of La$^{3+}$ ion. The values of s for all the samples less than unity suggest the dominance of ac conduction phenomenon in the prepared samples. In general the optical, magnetic, and dielectric properties of cobalt aluminates have improved, due to the addition of La$^{3+}$ content, which give it a wider scope for use as catalysis, ceramics, magnetic materials, and humidity sensor.

Acknowledgments

Central Laboratory for Water and Environmental Technology (Faculty of Science Damanhur University) is gratefully acknowledged for laboratory support and lab facilities.

Fig. 9. (a) complex impedance plane(Z' vs Z'' plot) and (b) Complex electric modulus plane plot (M' vs M'').
References

24. S. Suguna, S. Shankar, S. K. Jaganathan, A. Manikandan, Novel Synthesis of Spinel Mn\textsubscript{{Co\textsubscript{1-x}}Al\textsubscript{x}}O\textsubscript{4} (x = 0.0 to 1.0) Nanocatalysts: Effect of Mn2+ Doping on Structural, Morphological, and Opto-Magnetic Properties, *J Supercond Nov Magn.* 30, 691–699(2017).

25. M. Khairy, Effect of Ni content on optical, colorimetric, surface and magnetic properties of Ni\textsubscript{0.5}Co\textsubscript{0.5}Al\textsubscript{2}O\textsubscript{4} nanoparticles, *J. IRAN. CHEM. SOC.* 13, 671–677(2016).

36. Jianjun Liu, Chun-Gang Duan, Wei-Guo Yin, Wai-Ning Mei, R. W. Smith, and John R. Hardy, Large Dielectric Constant and Maxwell-Wagner Relaxation in Bi\textsubscript{1.3}Cu\textsubscript{1}Ti\textsubscript{1}O\textsubscript{12} *Phys. Rev. B* 70, 144106 (2004).
تأثير اللانثانوم على الخصائص الفيزيائية والبصرية والمغناطيسية والعزل الكهربي في الجسيمات النانوية CoAl\(_{2-x}\)La\(_x\)O\(_4\) من الناحية CoAl\(_{2-x}\)La\(_x\)O\(_4\)

ف. إ. عبد المنعم صقر

قسم الفيزياء - كلية العلوم - جامعة دمنهور.

تآثر اللانثانوم على الخصائص الفيزيائية والبصرية والمغناطيسية والعزل الكهربي في الجسيمات النانوية CoAl\(_{2-x}\)La\(_x\)O\(_4\) من الناحية CoAl\(_{2-x}\)La\(_x\)O\(_4\) (CoAl\(_{2-x}\)La\(_x\)O\(_4\))، حيث تم تغليد الجسيمات النانوية بطريقة الترسيب الشريطي. استخدمت تقنية حزم الأشعة السينية (XRD) للتحقق من بنية ألومنيت النانوية الشكلية. وقد لوحظ أن مع زيادة محتوى أيون لانثانوم \(\text{La}^{3+}\) في (CoAl\(_{2-x}\)La\(_x\)O\(_4\)) من الناحية CoAl\(_{2-x}\)La\(_x\)O\(_4\) فإن نسب الشبكة البلورية (a) تزيد من 8.78 إلى 8.963، والكثافة النظرية للبلاط (\(\rho_{\text{rmm}}\)) تزيد من 4.254 إلى 4.354. وقد أوضحت نتائج صور الميكروسكوب الإلكتروني النافذة SEM التشكل كروي متجانسا للجسيمات النانوية. كما أشار خليط أطيف الأشعة X الحمراء إلى نتائج اقتصار ضئيل (تراوح طول الموجة من 700-500 سم\(^{-1}\))، والذي ينتمي إلى ألومنيت النانوية من نواحي أطيف الاسترداد البصري في نطاق الانتشار فوق البنفسجي والضوء المرئي. ومن دراسة وتحليل النافذة ميزة إلكترونية للجسيمات النانوية مع زيادة فينر من \(\text{La}^{3+}\) ظهرت زيادة في فجوة النتوء البصري من 4.83 إلى 4.983 مع زيادة فينر عالي من 0.11 إلى 1.70، بدءاً من 1.930، بدراسة الخواص المغناطيسية. أظهرت النتائج زيادة في سلك المغناطيسية الحديدية (superparamagnetic) مع زيادة فينر عالي من 0.11 إلى 1.70، ولأصل ألومنيت النانوية من الناحية CoAl\(_{2-x}\)La\(_x\)O\(_4\) وكذلك كتبت العزل يجب أن يكون ناتجًا عن تكوين عشوائي أحادي السطح بحجم الجسيمات الصغيرة. وقد أظهرت الدراسة أن قيمة المغناطيسية العاملة للاضطراب والصلابة في النواحي CoAl\(_{2-x}\)La\(_x\)O\(_4\) للجسيمات النانوية \(\text{La}^{3+}\) للمضاف المنحني، وعلى أساس إضافة أيونات \(\text{La}^{3+}\) لتمثيل الصناعات الفيزيائية، العزل الكهربي والمغناطيسية الحديدية منها في الibbeanة الأصلية غير المضافة لها.