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Abstract  

 n this paper, the thermodynamic parameters of a rotating ultracold atomic Fermi gas has been 

theoretically investigated. The analysis was based on a semiclassical approximation which is 

Sommerfeld expansion for the integral over the energy. Based on this result, several thermodynamic 

quantities are subsequently derived, such as the grand canonical thermodynamic potential, total 

energy, heat capacity and entropy. We subsequently explored how the rotation rate and interaction 

parameters influence various thermodynamic properties of the system. The results clearly indicate 

that these thermodynamic quantities are influenced by the rotation rate , while at the same time, they 

remain unaffected by the trap parameters across all temperature ranges. By using specific heat as an 

indicator, we also examined the phase transition from the gas phase to the degenerate phase. The 

methodology presented here can be extended to investigate the thermodynamic properties of a 

rotating Bose gas subjected to a combined harmonic and lattice potential. 

Keywords: thermodynamic parameters, rotating ultracold atomic Fermi gas, semiclassical 

approximation, rotation rate, interaction parameters. 

 

 

Introduction 

Ultracold atomic Fermi gases offer numerous significant advantages that significantly improve our 

comprehension of the many-body physics of fermions. Due to their distinct characteristics and emerging 

occurrences, quantum many-body phases are a subject of ongoing investigation. Theoretical and experimental 

communities have been interested in ultracold molecular Fermi gases for several years [1–4]. The main 

objectives of these endeavors are to model new states of matter, including supersolids and nonconventional 

superfluid. In addition to studying, the Fermi-Hubbard model experimentally in a pure, isolated environment 

with full control over all Hubbard parameters [5,6] liquid 3He [7], high temperature superconductors [8], and 

neutron stars [9]. 

Consideration should be given to trapped degenerate Fermi gases as a potential model for coupled Fermi 

condensates at lower temperatures as well as as a degenerate quantum system. Despite the fact that the ideal 

Fermi gas is a well-understood problem, the non-interacting Fermi gas is a good zeroth-order approximation in 

many well known systems. The interactions between atoms in Fermi gases are primarily short-range and have 

weak effects in the dilute limit. In numerous instances, interactions can be disregarded or viewed as a minor 
disturbance, such as in spin-polarized gases where the Pauli exclusion principle significantly reduces interactions 

at low temperature [10–12]. 

The temperature at which phase transition from normal gas to degenerate gas, dependence on various factors. 

Including the density of the gas, and the external trapping potential. In general, the transition temperature is 

determined by the balance between the thermal energy of the atoms and the attractive interactions that drive 

them to form a degenerate state. To understand the temperature properties of degenerate fermion, it is helpful to 

consider the concept of quantum statistics. Fermionic atoms obey the Pauli exclusion principle. This principle 

leads to the formation of a degenerate Fermi gas at low temperatures, where the fermions occupy the lowest 

available energy states, forming a Fermi sea. In many cases the role of interactions can in fact be neglected, as 

in the case of spin polarized gases where interactions are strongly suppressed at low temperature by the Pauli 

exclusion principle or treated as a small perturbation. 
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Basic formalism 

Imagine a Fermi gas that is harmonically confined and has two spin states that are equally inhabited, as defined 

by the grand canonical ensemble. This gas is set up to rotate at an angular frequency of 𝛺 around the z axis. The 

Hamiltonian of the particle in the spinning frame is provided by[ 13-15]. 

 

 

𝐻 =
𝑝2 + 𝑝𝑧

2

2𝑀
+

1

2
𝑀[𝜔⊥

2 (𝑥2 + 𝑦2) + 𝜔𝑧
2𝑧2]  − 𝛺𝐿𝑧    

                           =
|𝑝⊥ − 𝑀𝛺 × 𝑟⊥|  2

2𝑀
 +

𝑝𝑧
2

2𝑀
+ 𝑉𝑟𝑜𝑡(𝑟⊥, 𝑧)                                 ( 1)   

where 

 

                   𝑉𝑟𝑜𝑡(𝑟⊥, 𝑧) =
1

2
𝑀[𝜔⊥

2 (1 − 𝛼2)𝑟⊥
2 + 𝜔𝑧

2𝑧2]                                      (2) 

where 𝑀 is the atom mass, 𝑟⊥
2 = 𝑥2 + 𝑦2, 𝛼 =

𝛺

𝜔⊥
 is the rotation rate, and 𝜔⊥ ≡ 𝜔𝑥 ≡ 𝜔𝑦 , 𝜔𝑧 is the harmonic 

oscillator frequencies. 

Hamiltonian in Eq.(1) has energy-eigenvalues given by [16,17], 

 

𝐸(𝑛+, 𝑛−, 𝑛) = 𝑛+ℏ𝜔⊥(1 − 𝛼) + 𝑛−ℏ𝜔⊥(1 + 𝛼) + 𝑛𝑧ℏ𝜔𝑧 + 𝐸0                                              (3) 

 

Where 𝐸0 = ℏ𝜔⊥ +
1

2
ℏ𝜔𝑧 is the ground state energy, 𝑛+, 𝑛− and 𝑛𝑧 are positive integers. 

 

Based on the partial derivative of the grand potential.𝛺(𝛼, 𝑇), which is the logarithm of the grand canonical 

partition function, all relevant parameters reflecting the superfluidity nature are obtained [18-20]. When all states 

are added up, the grand-canonical potential of an ideal Fermi gas can be expressed generally, 

𝛺(𝛼, 𝑇) = ∑ ln

𝑛,𝑚,𝑛𝑧=0

(1 + 𝑒−𝛽(𝐸𝑛,𝑚,𝑛𝑧−𝜇(𝑇)))                                             (4) 

Where 𝛽 = (1/𝑘𝐵𝑇), and 𝜇(𝑇) is the chemical potential. 

There is no analytically possible closed form evaluation for the sum in Eq. (4). An alternative method for 

performing this analysis would be to use an integral weighted by a suitable smooth density of states (DOS) 

𝜌(𝐸),[21,22]  to approximate the total i.e. 

𝛺(𝛼, 𝑇) =
1

2
∫ 𝑑

∞

0

𝜖𝜌(𝜖)ln[1 − 𝑛(𝜖)]                                                             (5) 

with  is the density of states for non-interacting gas, 

𝜌(𝜖) =
1

2

1

(1 − 𝛼2)

𝜖2

(ℏ𝜔𝑔)
3                                                                                 (6) 

where the geometrical average of the harmonic oscillator frequencies is 𝜔𝑔 = (𝜔⊥
2 𝜔𝑧)1/3 and, 𝑛(𝜖) =

1

𝑒𝛽(𝜖−𝜇(𝑇))+1
 is the Fermi weighting factor. The chemical potential is fixed by the normalization condition[11]  

𝑁 = ∫ 𝑑
∞

0

𝜖𝜌(𝜖)𝑛(𝜖)                                                                                           (7) 

where 𝑁 is  required to be sufficiently large and being the number of atoms. 

For later convenience, we should introduce a scaling behaviour of this many-body system. A first natural scaling 

parameter is given by the Fermi temperature 𝑇𝐹 , the temperature characterizing the onset of quantum degeneracy 

phenomena. However, at 𝑇 = 0 Eq.(7) allows one to calculate the Fermi energy, 𝐸𝐹 = 𝜇(𝑇 = 0, 𝛼), defined as 

the energy at which all states below it are occupied and all states above it are unoccupied. The Fermi energy for 

nonrotating harmonic trap filled with 𝑁 Fermions is given by, 

   𝐸𝐹 = 𝑘𝐵𝑇𝐹 = (6𝑁)
1

3(ℏ𝜔𝑔)                                                                                    (8)      

𝑇𝐹 =
(6𝑁)1/3

𝑘𝐵

(ℏ𝜔𝑔)                                                                                              (9) 

The temperature of a degenerate fermionic gas is typically measured in terms of the Fermi-temperature 𝑇𝐹 . 

Below 𝑇𝐹 , the ultra cold Fermion gas exhibits superfluid behavior, while above 𝑇𝐹 , the system behaves as a 

normal gas. Consequently we should calculate the integral in Eq.(5) for these two limited. 

For very low temperature, in the degenerate regime, substituting Eq.(6) into Eq.(5) and integrating by parts, one 

obtains the simplified integral 

ρ(ϵ )
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𝛺(𝛼, 𝑇) =
𝛽

6
∫ 𝑑

∞

0

𝜖
𝜖𝜌(𝜖)

𝑒𝛽(𝜖−𝜇(𝑇)) + 1
                                                                                                 (10) 

using Sommerfeld expansion, 

∫
𝜂(𝜖)

𝑒𝛽(𝜖−𝜇(𝑇)) + 1
𝑑𝜖 = ∫ 𝜂

𝜇(𝑇)

0

(𝜖)𝑑𝜖 + ∑ 𝑎𝑛(𝑘𝐵𝑇)2𝑛
𝑑2𝑛−1𝜂(𝜖)

𝑑𝜖2𝑛−1
|

𝜖=𝜇(𝑇)

                             

∞

𝑛=1

 (11)

∞

0

 

with 𝜂(𝜖) bing any function of 𝜖, and 

𝑎𝑛 = (2 −
1

22(𝑛−1)
) 𝜁(2𝑛)                                                                                                                    (12) 

where 𝜁(𝑛) is the Riemann zeta function. For 𝜂(𝜖) = 𝜖𝜌(𝜖), we have 

𝛺(𝛼, 𝑇) =
𝛽

6
[

∫ 𝑑
𝐸𝐹

0

𝜖  𝜖𝜌(𝜖) + ∫ 𝑑
𝜇(𝑇)

𝐸𝐹

𝜖  𝜖𝜌(𝜖) + 𝑎1(𝑘𝐵𝑇)2[𝜌(𝜇) + 𝜇𝜌′(𝜇)]

+𝑎2(𝑘𝐵𝑇)4[3𝜌″(𝜇) + 𝜇𝜌‴(𝜇)] + 𝑎3(𝑘𝐵𝑇)6[4𝜌‴(𝜇) + 𝜇𝜌⁗(𝜇)]

]            (13) 

The temperature dependence of µ(T) can be calculated using the Sommerfeld expansion, Eq.(11) [12] 

𝜇(𝑇) = 𝐸𝐹 − 𝑎1(𝑘𝐵𝑇)2
𝜌′(𝜖)

𝜌(𝜖)
|

𝜖=𝐸𝐹

  = 𝐸𝐹 [1 − 𝑎1 (
𝑘𝐵𝑇

𝐸𝐹

)
2

]                                                          (14) 

the other terms are vanished since the DOS is a quadratic function of energy. 

In Eq.(13), the first integral is just, 𝛺0(𝛼, 0) = 0, the thermodynamic potential of the ground state at 𝑇 = 0. 

From Eq.(14) we know |𝜇(𝑇) − 𝐸𝐹| ∼ (𝑘𝐵𝑇)2 is small, we can approximate the second integral as, 

∫ 𝑑𝜖 𝜖𝜌(𝜖)
𝜇(𝑇)

𝐸𝐹

≈ (𝜇(𝑇) − 𝐸𝐹)𝐸𝐹𝜌(𝐸𝐹) =  −𝑎1(𝑘𝐵𝑇)2
𝜌′(𝜖)

𝜌(𝜖)
|

𝜖=𝐸𝐹

  𝐸𝐹𝜌(𝐸𝐹)                            (15) 

thus Eq.(13) gives 

𝛺(𝛼, 𝑇) =   
𝛽

6
[−𝑎1(𝑘𝐵𝑇)2

𝜌′(𝐸𝐹)

𝜌(𝐸𝐹)
  𝐸𝐹𝜌(𝐸𝐹) + 𝑎1(𝑘𝐵𝑇)2[𝜌(𝜇) + 𝜇𝜌′(𝜇)] + 𝑎2(𝑘𝐵𝑇)4[3𝜌″(𝜇) + 𝜇𝜌‴(𝜇)]

+ 𝑎3(𝑘𝐵𝑇)6[4𝜌‴(𝜇) + 𝜇𝜌⁗(𝜇)]   ]                                                                              (16) 

Since µ(T)-EF    is small, we can evaluate the second term at µ(T)=EF  and finally have, 

𝛺(𝛼, 𝑇) =
1

6
[𝑎1(𝑘𝐵𝑇)𝜌(𝜇) + 𝑎2(𝑘𝐵𝑇)3[3𝜌″(𝜇) + 𝜇𝜌‴(𝜇)] + 𝑎3(𝑘𝐵𝑇)5[4𝜌‴(𝜇) + 𝜇𝜌⁗(𝜇)]]                           

            =   
1

6

1

(1 − 𝛼2)(ℏ𝜔𝑔)
3

[𝑎1(𝑘𝐵𝑇)𝜇(𝑇) + 3𝑎2(𝑘𝐵𝑇)3]                                                                (17)  

 

This is a general equation for the grand-canonical thermodynamic potential of a low-temperature ideal 

harmonically confined degenerate Fermi gas. 

At high temperatures ( classical limit 𝑇 ≫ 𝑇𝐹) Eq.(10) is approximated to, 

𝛺>(𝛼, 𝑇) =
1

6

𝛽

(1 − 𝛼2)(ℏ𝜔𝑔)
3 [∫ 𝑑

𝜇(𝑇)

0

𝜖 𝜖3𝑒−𝛽(𝜖−𝜇(𝑇))

+ ∫ 𝑑
∞

𝜇(𝑇)

𝜖 𝜖3𝑒−𝛽(𝜖−𝜇(𝑇))]                                                                                      

=
1

6

1

(1 − 𝛼2)(ℏ𝜔𝑔)
3 [∑

3 𝜇>(𝑇)𝐾

𝛽3−𝐾

3

𝐾=0

]                                                                     (18) 

the chemical potential, high temperature approximation for Eq.(7), is given by 

  µ>(𝑇) = −𝑘𝐵𝑇 ln [
6

(1 − 𝛼2)
 (

𝑘𝐵𝑇

𝐸𝐹

)
3

]                                                                                                    (19) 

Finally in terms of 𝜏 =
𝑇

𝑇𝐹
, the thermodynamic potential is given by 

𝛺𝜏<1(𝛼, 𝑇) =
𝑁

(1 − 𝛼2)
[
𝜋2

12
𝐴2𝜏 +

7𝜋4

120
𝜏3]                                                                                        (20) 

where 𝐴 = [1 −
𝜋2

3
𝜏2]. and 

𝛺𝜏>1(𝛼, 𝑇) =
𝑁𝜏3

(1 − 𝛼2)
[𝛺0(𝛼, 0) − 𝐵3 + 3𝐵2 − 6𝐵 + 6]                                                             (21) 

where 𝐵 = ln [
6

(1−𝛼2)
𝜏3]. 

Here, we determine all for finite N from the state sum and compare it to the Sommerfeld approximation. 
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Fig.1. The chemical potential is plotted as a function of temperature, with both axes scaled by the Fermi 

temperature. This scaling produces a universal curve applicable to all harmonically trapped 

Fermi gases. Blue curve for 𝝉 > 𝟏 and dark for 𝝉 < 1. 

 

It is evident that the low temperature approximation remains quantitatively accurate below.    𝑇/𝑇𝐹 ∼ 0.6. 

 

Thermodynamic parameters 

 

Total energy 

Following the standard procedure, the total energy can be expressed in terms of th𝑒 𝛺(𝛼, 𝑇)-potential as follows 

𝑈 = 𝑘𝐵𝑇2 (
𝜕𝛺(𝛼, 𝑇)

𝜕𝑇
)

𝜇

                                                                                                                   (22) 

Substituting from Eqs.(20) and (21) in Eq.(22), the total energy per particle is given by, 

𝑈𝜏<1

𝑁𝑘𝐵𝑇𝐹

=
𝜋2

12

𝜏2

(1 − 𝛼2)
[𝐴2 −

4𝜋2𝐴𝜏2

3
+

21𝜋2𝜏2

10
]                                                                 (23) 

for 𝜏 < 1. While for 𝜏 > 1 one has 

𝑈𝜏>1

𝑁𝑘𝐵𝑇𝐹

=
−3𝜏4

(1 − 𝛼2)
[𝐵3]                                                                                                              (24) 

 

 

 
Fig.2.Total energy as a function of temperature. Blue curve for 𝝉 > 𝟏 and dark for 𝝉 < 1. 
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Beginning with the energy, one can evaluate the specific heat, entropy, and other thermodynamic quantities. 

 

Heat capacity 

 

According to our approach, the specific heat can be written as 
𝐶𝑉(𝑇)

𝑁𝑘𝐵

=
𝜕

𝜕𝑇
(𝑘𝐵𝑇2)

𝜕𝛺(𝛼, 𝑇) 

𝜕𝑇
                                                                                (25) 

Substituting from Eq.(20) in Eq.(25), up to order ( 𝜏) , 

𝛺(𝛼, 𝑇) =
𝑁

6
[𝛺0(𝛼, 0) +

𝜋2

12
𝐴2𝜏]                                                                          (26) 

The usual textbook Sommerfeld approximation for the specific heat at low temperatures, 𝜇(𝑇) = 𝐸𝐹  i.e. in our 

approach 𝐴 = 1, is recovered, 

𝐶𝑉,𝜏 < 1

𝑁𝑘𝐵

=
𝜋2

(1 − 𝛼2)
 
𝑘𝐵𝑇

𝐸𝐹

                                                                                            (27) 

 

 

For any value of 𝜇(𝑇)and   𝜏 < 1, the heat capacity is given by, 

𝐶𝑉,𝜏 < 1

𝑁𝑘𝐵

=
𝜋2

6
 

1 

(1 − 𝛼2)
  [𝐴2 𝜏 −

10

3
𝜋2𝐴𝜏3 +

4

9
𝜋4𝜏5 +

21

5
𝜋2𝜏3]                    (28) 

While the heat capacity above 𝜏 > 1 is given by 

𝐶𝑉,𝜏> 1

𝑁𝑘𝐵

= −
3𝜏3

(1 − 𝛼2)
 [4𝐵3 + 9𝐵2]                                                                          (29) 

 

 

 
Fig.3. This plot shows the specific heat as a function of temperature. Blue curve for 𝝉 > 𝟏 and dark for 𝝉 < 

1. 

 

 

The results obtained from Eqs. (28) and (29) are illustrated in Fig. 3 for various values of α. In this, we plot the 

normalized heat capacity Cv/NKB versus the normalized temperature 𝜏 , with the rotation rate α plays as a 

parameter. The heat capacity evolves, starting from zero, with increasing values proportional to the third power 

of the normalized temperature, that is: 𝐶𝑉 ∝ 𝜏3 . At 𝜏 = 1 a steep jump takes place while it goes from 𝜏 < 1 to 𝜏 

>1. Above the critical temperature, a slow decrease with the temperature is observed in Cv. At high temperatures, 

the heat capacity approaches the temperature’s independent behaviour expected for the non-interacting Bose gas: 

. 

 

3N kB
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It is interesting to note that, signatures of a phase transition appear in the specific heat behaviour as a function of 

𝜏 , 𝛼,and η. As T decreases, the phase transition, observed at 𝜏 =1, reveals the transition from non condensed 

state to those which is in condensed phase. 

 

Entropy of the system 

 

A primary objective in the study of degenerate Fermi gases is to reach very low temperatures which are accurate 

for condensed matter physics, such as quantum magnetism. However, to ascertain whether a given quantum 

phase is accessible, it is convenient to focus on its entropy, rather than temperature. Thus, it is important to 

determine and investigate the entropy-temperature curves[25]. The behaviour of these curves is used in 

analyzing the process of adiabatic cooling[25-27] . 

For the rotating condensate, the normalized entropy per particle is given by, 

 
𝑆

𝑁𝜎𝑘𝐵

=
𝛺(𝛼, 𝑇)

𝑁𝜎

+
𝑈

𝑁𝜎𝑘𝐵𝑇
−

𝜇(𝑇)

𝑘𝐵𝑇
                                                                                         (30) 

Substituting from Eq’s.(13), (14), (19), (24) and (23) in Eq.(30) we have, 

 

𝑆𝜏<1

𝑁𝜎𝑘𝐵

=
1

(1 − 𝛼2)
[
𝜋2

6
𝐴2𝜏 +

7𝜋2

120
𝜏3 −

𝜋4

9
𝐴𝜏3 +

7𝜋4

40
𝜏3 − (1 − 𝛼2)

𝐴

𝜏
]                       (31) 

for 𝜏 < 1, and 

𝑆𝜏>1

𝑁𝜎𝑘𝐵

=
𝜏3

(1 − 𝛼2)
[−4𝐵3 + 3𝐵2 − 6𝐵 + 6] + 𝐵                                                                 (32) 

for 𝜏 > 1. 

 

 
 Fig.4. Plot of entropy versus temperature. The blue curve represents τ > 1, and the dark curve represents 

τ < 1. 

 

 

In Fig.4 the entropy versus temperature curves, as a function of α and η , are given. These figures show that, as it 

is expected from standard thermodynamic arguments, that: as the temperature increases, the entropy has a 

monotonically increasing nature everywhere. Consequently, in order to achieve thermal equilibrium in rotating 

frame, the trap should contain an asymmetry in the 𝑥𝑦 −plane. Even very small asymmetries are sufficient to 

ensure thermal equilibrium and safe calculation of the relevant thermodynamic parameters. However, one of the 

sensitive quantities, to clear up the effects of the rotation and the interatomic interaction on the condensate, is the 

behavior of the heat capacity as a function of the reduced temperature.  

 

Conclusion 

In conclusion, by employing the Sommerfeld expansion approximation, we have derived analytical 

expressions for the thermodynamic potential and chemical potential of a rotating Fermi gas confined in an 
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axially symmetric harmonic potential. Subsequently, we obtained formulas for the total energy, specific heat, 

and entropy. Our results demonstrate that these thermodynamic quantities depend on the rotation rate while 

remaining independent of the trap parameters across the entire temperature range. Using the specific heat  as an 

indicator, we also investigated the phase transition from the gas phase to the degenerate phase. The approach 

presented here can be extended to explore the thermodynamic properties of a rotating boson gas subjected to a 

combined harmonic and lattice potential. 
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 الفيرمية فائقة البرودة الدوارالديناميكية الحرارية للغازات الذرية المعاملات 

 ابتسام على عيد و علياء عادل محمود ،د حسناحمد سي

 
 .، مصرالمنياقسم الفيزياء، كلية العلوم، جامعة 

 

 الملخص

في هذه الورقة البحثية، تم دراسة سلوك المعاملات الديناميكية الحرارية لغاز فيرمي الذري فائق البرودة دوار نظريًا. استند 

التحليل إلى تقريب شبه كلاسيكي، وهو توسع سومرفيلد، للتكامل على الطاقة. بناءً على هذه النتيجة، تم استخلاص العديد من 

الكميات الديناميكية الحرارية، مثل الجهد الديناميكي الحراري القياسي الكبير، والطاقة الكلية، والسعة الحرارية، والإنتروبيا. 

معدل الدوران ومعاملات التفاعل على الخواص الديناميكية الحرارية. تشير النتائج إلى أن هذه ثم استكشفنا كيف يؤثر 

الكميات الديناميكية الحرارية تتأثر بمعدل الدوران، لكنها تبقى غير متأثرة بمعاملات المصيدة عبر جميع نطاقات درجات 

 الحرارة.

ت الثرموديناميكية، غاز فرمي رري فائق البرودة دوار، التقريب شبه الكلاسيكي، معدل الدوران، لاماالمع الكلمات الدالة:

 .التفاعل معاملات
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