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Introduction                                                         

Bose-Einstein condensation (BEC) rotating in one 
dimensional (1D) optical lattice is a promising 
tool to simulate various problems from condensed 
matter physics [1-5]. In particular, BEC in 1D 
optical lattice constitutes a multilayer system, 
which has a great potential of applications. 
This system has an intriguingly similar layered 
structure such as the high-  superconductors 
in a magnetic field. As well as, it can be used to 
investigate the excitations, stability and dynamics 
of a vortex line in superfluid [6]. Moreover, this 
system can be used to reach fractional quantum 
Hall state [7]. However, this wide range of 
applications makes the inclusion of interatomic 
interaction an essential requirement for the correct 
description of the system. 

In our previous work [8], we used the 
semiclassical Hartree-Fock approximation to 
investigate the interaction effect on the rotating 
condensate boson gas. In the present work, the 
relevant thermodynamic parameters of rotating 
BEC in a 1D deep optical lattice under realistic 
experimental condition will be calculated. These 
parameters enable us to illustrate the existing 
experimental data from a theoretical viewpoint. 
However, the quantum statistical mechanics of 
the interacting system remain unsolvable and 
one has to resort to approximated schemes. In 
this respect, the semiclassical Hartree-Fock (HF) 

approximation [9] provides the scheme mostly 
used for taking into account the interatomic 
interactions [10]. This mean-field theory avoids 
the difficulty of solving the full many-body 
Schrödinger equation for an interacting system by 
reducing the many-body problem to a one-body 
problem via the introduction of an appropriate 
mean field potential generated by all the other 
particles. 

Motivated by the recent advances achieved 
in the experimental manipulation of rotating 
condensates [11,12] and of condensates loaded 
into optical lattices[13], we use the self-consistent 
HF to study the temperature dependence of 
the thermodynamic parameters for the rotating 
interacting BEC in 1D optical lattice. The effects 
of the rotation rate and optical potential depth are 
considered simultaneously. Many open questions 
related to exploring the effects of interatomic 
interactions, rotation rate and optical potential 
depth on the behavior of this system under 
different circumstances [14] are considered. These 
include: the BEC transition temperature [15,16]; 
the heat capacity, which enabled us to discuss the 
order of phase transition [17,18] and the entropy 
of the system[19], required to investigate the 
adiabatic cooling of the boson system in lattice. 
Our results are given for the trap parameters of 
the Hadzibabic’s et al. experiment [13]: the radial 
and axial frequencies of the harmonic trap are  
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=  74 Hz,  =  4 kHz and  =  
80 Hz. The optical potential depth normalized to 
the recoil energy =  ranging from 0 ~100 
and the lattice spacing = . The calculated 
results showed that the thermodynamic properties 
depend strongly on the simultaneous effect for 
rotation rate and the optical potential depth for the 
whole temperature range.

The paper is planned as follows: section 
two includes the system definition. The self-
consistent Hartree-Fock model for the system 
under consideration is given in section three. The 
thermodynamic quantities are given in section 
four. Discussion and conclusion are given in the 
last section.

Basic formalism
We consider a mesoscopic sample of weakly 

interacting  bosonic atoms of mass placed 
in an axially symmetric harmonic potential 
combined with one-dimensional optical potential 
in the radial direction,

   =        (1)

with  is the perpendicular radius and 
[  are the effective trapping 
frequencies of the harmonic potential, is the 
optical potential depth and is the lattice spacing 
in a direction 

For the potential (1), it is impossible to 
find an exact analytical expression for the 
energy eigenvalues. However, an approximated 
expression can be readily obtained by considering 
an accurate approximation for the optical lattice 
potential . For a very deep lattice, where the 
atoms are localized at the potential minima of 
the optical lattice and hopping between different 
lattice sites is negligible, the optical potential can 
be safely approximated by an equivalent harmonic 
potential [2],

    

with on-site trapping frequency, 
is a dimensionless parameter and =

 is an energy scale for specifying the lattice 
depth. It is defined as the recoil energy that one 
atom requires when it absorbs one lattice photon. 

Finally, the trapping potential is given by:

        (2)

The harmonic approximation is valid provided 
that the well is deep enough to contain several 
bound states and that the temperature is low 
enough that only states at the bottom of the well 
are occupied. In the rotating frame, this stirring 
potential reads [20,21],

                                                                           (3)

where, , is the rotation rate and  is 
rotation frequency around the  axis.

The Hamiltonian, describing the interacting 
atomic gas in the potential (3) is given by Cooper 
[22].

         (4) 

where  is the most effective potential 
for rotating interacting boson in optical lattice,

    (5) 

with = , is the interaction strength,  
and are the density of condensate and 
thermal atoms in the rotating frame.

Hartree-Fock approximation
In the self-consistent Hartree-Fock model, the 

condensate part satisfies the time-independent 
Gross-Pitaevskii equation (GPE)

  
                                                       

]             (6) 

The GPE determines the condensate density 
quantum mechanically,   
whereas the thermal atoms are treated 
semiclassically as a locally homogeneous ideal 
gas of bosons. The effect of the rotation is to 
change the shape of the distribution function of 
the thermal atoms so that, the thermal density out 
of the condensate takes the form [23,24],

                                                                   (7)

After substituting the Hamiltonian  and 

[
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doing the p integration by making the change 
of variables  [25], the 
integral in Eq. (7) takes the same form as in the 
absence of rotation with an effective frequencies 

 and 

                                                                           (8)

where  is the thermal de-Broglie 
wavelength and  is the effective fugacity.

Equations (6) and (8), along with the constraint 
that the total number of atoms  is fixed

           (9)

form a closed set of equations, define the Hartree-
Fock theory for rotating condensate in optical 
lattice, which  must be solved self-consistently.

Condensate density and chemical potential
Both the condensate density  and  

can be calculated from GPE for the condensate 
part, Eq.(6). The situation may be simplified by 
taking two advantages:

1. Firstly, one can neglect any influence of the 
thermal component on the spatial distribution 
of the condensate wave function

2. Secondly, we can neglect the mean-field energy 
due to the thermal component itself.

In this case, the condensate density, , can 
be obtained through Thomas-Fermi approximation 
(the kinetic energy term is omitted) of Eq6), i.e.

[ 1 - -  ]                                            (10)

For all  ,  
elsewhere.   In Eq. (10), the parameters 
and   are the Thomas-Fermi radii at which 
the condensate density drops to zero along or  
axis, .These radii are given by:

   and      (11)

Thus, both of them accounted for the condensate 
radius in terms of the trap parameters and can 
be expressed in terms of the condensate number 
of atoms through the relation between and 
The relation between and  can be found by 
integrating (10) over the ellipsoid with semi-axes 

and ,

   (12)

Using Eq.(11)  in  Eq.(12),  one has

=                                                                      (13)

where                                             is     the       
chemical potential for non rotating condensate, 

a is the s-wave scattering length,  
and . The parameterized  in 
Eq.(13) looks like a generalization for the well 
known Thomas-Fermi approximation of rotating 
condensate in deep optical lattice. Moreover, 
within the same approximation the effective 
potential is  given by:

 
                        (14) 

Thus,  is the relevant energy scale parameterizing 
the effects of interactions, up to the point in 
the trap where  as pointed by 
Hadzibabic and co-worker [14]. Following their 
approach which considered that (compared with 

) the majority of thermal atoms lie outside the 
condensate in the region where 
and , the thermal atoms 
can be approximated by:

                       

   (15)

In terms of the thermal radii, which is 
equivalent to the Thomas-Fermi radii given 
in Eq.(11) and fixed the maximum value of the 
chemical potential compared to  and drops to 
zero along .

                                   (16)
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The thermal atoms are given by:

                                                                        

                                                                         (17)

      

  Following our procedure illustrated in our 
previous work [8] we have,

                                             (18)

with
 =                       

                                                                      

                                                                        (19)

and  is the BEC transition 
temperature of a harmonically trapped non-
rotating atoms. The parameter  in Eq.(19), 
first introduced by Stringari et al. [9,25], is 
determined by the ratio between the chemical 
potential at  value calculated in Thomas-
Fermi approximation and  in the same trap, i.e. 

 (the typical values 
for  of most experiments ranges from 0.3 to 0.4.). 
Finally the total number of particles is given by

   (20)

Similarly, using the same procedure, one can 
also obtain results for the total energy  [9],

 (21)

                                                                        

and the local grand potential,  

     

             (22)

Thermodynamic parameters                                   
Condensate fraction and critical temperature
Using Eq.(20) for the total atoms number, the 

condensate fraction is given by:

   (23)

with  which is the normalized temperature. 
In Eq.(23), the first term provides the condensate 
fraction in the thermodynamic limit. The second 
term, which vanishes for providing a 
consistent way for treating the interaction effect 
[26-29]. 

In the following, the calculated results will be 
considered for the experimental trap parameters of 
Hadzibabic [13]. In Fig.1, the dependence of the 
condensate fraction on  and α for optical potential 
depth  and interaction parameter  is 
illustrated. This figure shows that the condensate 
fraction has a monotonically decreasing nature for 
all α range 0,1}, the decreasing rate is minor in 
intermediate rotation regime and rapid in the fast 
rotation rate. The remarkable feature here is that 
the centrifugal force due to fast rotation exactly 
cancels the confining effect of the combined 
harmonic-lattice potential. Consequently, the 
condensate fraction drops to zero very quickly at 
α =1.

 In Fig. 2 the dependence of the condensate 
fraction on  and  for α = 0.7and  = 0.4 is 
considered. This figure shows that the condensate 
fraction is independent on  for the deep optical 
potential depth. This behavior is different from 
the one for shallow optical potential depth [16].

The issue of the interaction effect on the 
condensate fraction for lattice depth and 
the rotation rate α = 0.7 are given in figure 3. This 
figure shows that the interaction effect leads to 
about 15% reduction in the condensate fraction. 
Finally, for deep optical lattice, the dependence 
of the condensate fraction on lattice depth is 
minor while on the interatomic interaction and 
the rotation rate α is considerable. Thus both two 
effects must be taken into consideration for a 
safe estimation of the critical rotating frequency 
(rotating frequency required to achieve the vortex 
state) and critical temperature.

The second term in Eq. (23) leads to a 
reduction of the condensate fraction. So, it is 
important to consider the effect of the interatomic 
interaction and the rotation rate on the transition 
temperature. This effect can be seen more clearly 
by calculating the critical temperature . The 
latter is obtained as usual [17,30,31] by setting 
in Eq.(23) equal to zero, thus

                                                                                  (24)

This result enabled us to investigate the effects 
of the  and alpha on . Indeed, in Fig. 4, 
the normalized critical temperature  is 
represented graphically as a function of rotation 
rate α and interaction effect . This figure shows 
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Fig.1: Condensate fraction versus the reduced 
temperature  and rotation rate for

and s =50.

Fig. 2. Condensate fraction versus the reduced 
temperature  and the lattice depth s for  

 .

Fig. 3. Condensate fraction versus the reduced 
temperature  and interaction parameter

for s=50.

that the critical temperature  decreases as 
compared with the non-interacting case due 
to the repulsive nature of the interaction. The 
most remarkable point here is that the rate of 
, decreasing for low rotation rate, is more rapid 
than the one of fast rotation rate.

Entropy of the system
A major goal in the field of degenerate 

quantum gases is to reach a suitable very low 
temperature. Such low temperatures are necessary 

Fig. 4. Critical temperature  scaled by the non-
rotating transition temperature  for an 
interacting system, as a function of rotation 
rates  and interaction effect () for s=60 .

to reach phases relevant to condensed matter 
physics, such as quantum magnetism. However, 
it has been pointed out that loading sufficiently 
cold interacting boson atoms into a static optical 
lattice and is ramping the rotational frequency can 
lead to adiabatic cooling. To ascertain whether a 
given state is accessible, it is convenient to focus 
on its entropy rather than temperature. Thus, it 
is important to determine and investigate the 
entropy-temperature curves[32]. The behavior 
of these curves is used in analyzing the process 
of adiabatic cooling[19,33,34]. For the rotating 
condensate in an optical lattice, the normalized 
entropy per particle is given by Blakie [32]

                                                                        

                                                                        (25)

In Fig. 5, the entropy versus temperature 
curves as a function of α and  are given. 
These curves show that the entropy is always 
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fixed for temperatures sufficiently far below 
the transition temperature . As the 
temperature increases, , the entropy has a 
monotonically increasing nature everywhere.

Heat capacity
One of the sensitive quantities to clear up the 

effects of the rotation rate, optical potential depth 
and the interatomic interaction on the condensate 
is the behavior of the heat capacity as a function 
of the reduced temperature. In our approach, the 
heat capacity per a particle at constant volume 

 is given by,

      (26)

However, it is known that for a given number of 
atoms, increases to a maximum, then, falls 
rapidly to a saturation value as  increases greater 
than . In such a situation, we must take into 
consideration two different temperature regimes, 
which are  less or greater than . 

For , the heat capacity is given by:

                                                         (27)

While the heat capacity above the transition 
temperature, i.e. , is given by:

                                                                       (28)

in this case the total energy  is considered to be,

We now come to our analysis for the heat 
capacity using Eq’s.(27) and (28). Eq.(27) shows 

that  when , i.e.

                                                     (29)

thus, heat capacity (Eq.(29) obeys the third law of 
thermodynamics, which demands a vanishing heat 
capacity at zero temperature. For  <  
,the heat capacity is a smooth increasing 
function of  attaining its maximum value at 
temperature . For  the heat capacity 
drops suddenly to its asymptotic value. At 
, the heat capacity becomes discontinuous. The 
magnitude of the jump is quite significant,

             (30)

this result reveals that the heat capacity of the 
rotating harmonically trapped boson in a deep 
optical lattice is equivalent to the heat capacity 
of harmonically trapped ideal bosons at the onset 
of condensation. The system under consideration 
is equivalent to the 3D harmonic oscillator with 

frequencies and .

The Dulong-Petit law for our system can be 
extracted from Eq.(27). In the thermodynamic 
limit, as  the asymptotic value of the heat 
capacity is given by: 

                                                                   (31)

in calculating (31) the asymptotic expansion of 
 is used, for all value of  the function  

behaves like  itself.

The results calculated from Eq’s. (27) and (28) 
are represented in Fig. 6 and 7 for different values 
of  and  , respectively. The approximation 
used in [35] is considered here to calculate Bose 
function  in Eq.(28). In Fig.6, we plot the heat 
capacity, as a function of the reduced temperature, 
and the rotation rate as well as the heat capacity 

Fig. 5: Entropy versus normalized temperature  
with  and s play as parameters. 
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Fig. 6: Variation of the heat capacity  with the 
reduced temperature  with  plays as a 
parameter. 

Fig.7: Variation of the heat capacity with the 
reduced temperature  with s plays as a 
parameter, for  = 0.4.. 

as a function of the reduced temperature and 
lattice depth are illustrated in Fig. 7. The heat 
capacity evolves, the heat capacity increasing 
smoothly with temperature for , attaining 
its maximum values at the transition temperature, 
i.e. , and then, decreases rapidly with 
increases the temperature . It is continuous 
at the transition temperature, moreover its sharp 
peaks reminiscent to 𝝺-shape. However, there is 
a discontinuity in the slope of the heat capacity, 
∂ ∂ .

Discussion and Conclusion                                                                      

In this paper, using the semiclassical Hartree-
Fock approximation, we obtained an analytical 
expression for the thermodynamic parameters of 
a rotating interacting Bose gas in one dimensional 
deep optical lattice. Expressions for the condensate 
fraction: transition temperature, entropy and 
the specific heat are derived. Our approach 
provides the possibility to test the applicability of 
experimental realization of this system.

The calculated results showed that these 
thermodynamic quantities depend on the rotation 
rate, the optical potential depth as well as the 
interatomic interaction for all temperature range. 
The critical temperature and the condensate 
fraction are decreasing compared with the Bose 
rotating condensate gas case in the absence of 
the optical lattice. Using  as the indicator, we 
also investigated the phase transition from the gas 
phase to condensed phase.

First of all, one must bear in mind that our 
results are based on the interacting Bose gas 
model. As the rotation frequency increases from 
the slow rotation, there exists a dynamically 
unstable region of rotating velocities, i.e. there 
exists a critical rotation frequency. However, 
rotation effect leads to a shift in the radial harmonic 
oscillator frequencies, but still fulfill the condition 

 with be the critical rotation rate. 
The latter provides the criterion stability of the 
rotating condensate, it does not necessarily indicate 
the critical frequency for vortex nucleation. The 
corresponding thermodynamic rotation rate can 
be estimated using the relation [36], 

- 

We will discuss the required conditions to 
reach a stable rotating Q2D briefly. The Q2D can 
be reached when the thermal energy  is less 
than the site spacing energy in the direction, i.e.,

 

When the temperature is of the order of this 
spacing, i.e.

      (32)

the effect of the harmonic frequency  becomes 
pronounced and can be used to control the 
dimensionality cross-over of the system. We also 
note that, decreases  (increases  leads to a 
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cross-over to the strictly rotating 2D Bose gases. 
In this case, this thermal energy corresponds 
to the experimental situation with small, but 
not completely negligible, thermal occupation 
of a few excited states of the tightly confining 
potential.  Result in [32] also reveal that, the 
thermal stability of the Q2D system depends on 
both the lattice depth and the magnetic frequency 
along . The critical rotation rate provides the 
criterion stability of the rotating condensate and it 
does not necessarily indicate the critical frequency 
for vortex nucleation.

It is useful to compare the chemical 
potential, 𝝁 for the rotating condensate bosons 
in one dimensional deep optical lattice with the 
combined oscillator-optical energy in the tightly 
confinement direction. For the Q2D, the chemical 
potential should fulfill the condition

 

thus, in order to reach a stable Q2D the condition

must be satisfied. Finally, the analytical calculated 
results reveal that the system in a Q2D regime 
obeys the 2D statistics but interacts in the same 
way as in a 3D system. This important note is 
revealed from Eq.(13). 
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تمثل الخواص الثرموديناميكية لتكثيف بوز اينشتاين الدوار فى شبيكة ضوئية فى اتجاه محور الدوران وفى وجود 
 .(condensed matter physics) الارتباط  المواد شديدة  انظمة  لدراسة  الموازية  الانظمة  اهم  احد  التفاعل 
استخدام  تم  فى شبيكة ضوئية عميقة.  دوار  بوزونى  لغاز   الثرموديناميكية  الخواص  البحث دراسة  هذا  تناول 
حرارة  درجة  و  المتكثف  الجزء   ) الثرموديناميكية  البارامترات  حساب  فى  المستخدمة  هارترى-فوك  طريقة 
التكثيف والانتروبى والسعة الحرارية) . تعتمد هذه الطريقة علي تقليص معادلة شرودنجر لعدد N  من الجسيمات 
الي معادلة لجسم واحد وذلك باستنباط جهد فعال (تقريب الجهد المستخدم الي جهد فعال)  وبينت الحسابات ان هذه 
البارامترات تعتمد كثيرا على معدل الدوران وكذلك عمق الجهد الضوئى. وعلى الرغم من احتفاظ  البارمترات 
   (Adiabatic) حراريا  المعزول  والتحميل  الطورى  الانتقال   رتبة  حيث  من  الخواص  بنفس  الثرموديناميكية 
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