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Abstract  

he generalized noncommutative Heisenberg algebra based on the generalized uncertainty 

principle imposes a minimal length uncertainty to quantum mechanics (QM). On the other 

hand, quantum-induced spacetime is suggested as an additional curvature on the relativistic 

eight-dimensional tangent bundle (phase-space), with a complimentary term combining reconciling 

principles of QM with General Relativity (GR) and comprising the minimal length discretization and 

the first-order derivatives of tangent covectors, the quantum-induced torsion-free metric tensor could 

be constructed. Accordingly, quantum-induced corrections imposed on the symmetric stress-energy 

tensor, the source of spacetime curvature, and the energy density associated with the electromagnetic 

and scalar Lagrangian are also suggested. Besides the classical version of the stress-energy tensor, the 

proposed quantization introduces additional Lagrangian densities and potentials together with 

coefficients depending on the metric tensor, tangent covector derivatives, and physical constants 

including the gravitational constant, Planck constant, speed of light, and Planck length. The vanishing 

covariant derivative of the quantum-induced stress-energy tensor confirms Einstein’s GR and 

suggests that the corresponding continuity equation implies that the gravitational fields do work on 

the classical and quantum matter and vice versa. For vanishing tangent covector’s first derivative 

and/or vanishing minimal length uncertainty, the classical GR and the undeformed (orthodox) QM are 

fully retained. Accordingly, the Einstein stress-energy tensor is also retrieved. Thus, we conclude that 

the suggested quantum-induced stress-energy tensor is, in principle, suitable for both quantum and 

classical field equations.  

Keywords: modified gravity, minimal length scale, generalized uncertainty principle, general 

relativity, stress-energy tensor, deformed phase space. 

 

I- Introduction 

Even though special relativity and quantum mechanics have been unified for quite some time, there have been no 

successful attempts to reconcile general relativity and quantum mechanics over the last century. This script 

presents a revisit to new method inspired by the early efforts made by Born [1–4], and by Caianiello [5–8]. We 

also utilize the recent progress in quantum geometry [9–13] and noncommutative algebra [14–21]. In a recent 

work of the present authors [22], we have shown that the application of quantum-induced deformation is 

believed to imply the generalization of the Riemannian spacetime geometry that forms the basis of classical 

general relativity theory to an eight-dimensional spacetime fiber bundle. This expansion governs the alteration of 

the line element, metric tensor, Levi-Civita connection, and Riemann curvature tensor. In the present work, we 

primarily investigate the implications of such quantum-induced deformation on the classical GR Lagrangian and 

the stress-energy tensor. 

Unlike Caianiello’s technique [23], which we have already discussed in depth in [22], our method is clearly 

independent of any particle mass scale. It expressly manifests a minimal length scale, which, depending on the 

minimal length scale selected, can naturally be coupled to a maximal acceleration scale via some quantum 

deformation parameter and/or certain fundamental physical constants. Furthermore, our approach’s metric and 
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other geometrical objects are observer-dependent, in contrast to Brandt’s approach [24]. Thus, defining the 

minimum length (or maximum acceleration) does not necessitate the use of any universal length scale or mass 

scale. To be more precise, in our method, we presume that, excluding phenomenological limitations, we do not 

need to determine the minimal length scale to be precisely the Planck scale. 

For a source of spacetime curvature and energy density, we assume a symmetric stress-energy tensor. 

Moreover, in an earlier work [25] with the quantum-induced torsion-free metric tensor, we concluded that the 

vanishing covariant derivative, the continuity equation implies that the gravitational fields do work on the 

classical and quantum matter and vice versa and the non-gravitational-energy and momentum are no longer 

conserved. 

The present paper is organized as follows. The formalism is outlined in section 2. Section 2.1 is devoted to 

the relativistic generalized uncertainty principle in eight-dimensional fiber bundle. The quantum-induced stress-

energy tensor is introduced in section 2.2. The quantum-induced corrections to the Lagrangian of scalar and 

electromagnetic fields are given in section 2.3. Section 2.4 elaborates on the quantum-induced corrections to the 

stress-energy tensor with an electromagnetic Lagrangian. The symmetry properties and covariant derivative of 

the stress-energy tensor with an electromagnetic Lagrangian are outlined in sub-sections 2.4.1 and 2.4.2, 

respectively. The quantum-induced stress-energy tensor with a scalar Lagrangian and its symmetry property and 

covariant derivative are worked out in sub-sections 2.5.1, and 2.5.2, respectively. Section 3 is devoted to the 

summary and conclusion. 

 

II. Formalism 

A. Modified metric tensor 

The notion of minimum length as a result of the anticipated additional fuzziness of spacetime structure 

brought about by gravitational impacts close to the fundamental scales of very high energy required to resolve 

very small distances, L arises from the fact that a minimal measurable length uncertainty is predicted in various 

theories of quantum gravity. Kempf’s version of GUP [26] is the one we use in the present paper. It suggests 

      
 

 
[   (  )       ]             (1) 

where  p  is the momentum expectation value, ∆x and ∆p, respectively, represent the length and momentum 

uncertainties. The GUP parameter, β = β0G/(c
3 ), with β0 being a dimensionless parameter that encapsulates the 

transition to GUP and captures the effects of gravity on HUP, one of the fundamental ideas of QM. β0 is in the 

order of 1 according to different independent theoretical estimations [27]. However, there is still much work to 

be done to increase the current empirical bounds from new cosmological data of gravitational and non-

gravitational origin [27, 28]. In the present paper, we assume that β0 is left to be determined empirically. 

Now, the well-known commutation relation between momentum and length operators is as follows: 

[ ̂  ̂]    (    ̂ )                                          (2) 

The minimum uncertainty of position ∆xmin for the whole range of expectation values of momentum  p  is  

     (   )   √ √      
                               (3) 

When       , the absolute minimum uncertainty of position becomes   

     √                                                     (4) 

The minimal measurable length scale,    , can be used to determine the minimum position uncertainty. This 

value represents the distance at which quantum effects of the gravitational interaction are anticipated to become 

important. At that point, the minimal measurable length becomes 

       

   √                                        (5) 

In the following, we adhere to the basic concepts of Caianiello’s original model to incorporate quantum 

effects of the gravitational interaction on the spacetime geometry near the fundamental scale at which such 

effects are expected to become prominent [29–31]. This implies that a four-dimensional spacetime embedded as 

a hypersurface in an eight-dimensional manifold M8 can explain the classical GR and thus the classical spacetime 

geometry. We presume that the quantum regime, where we expect to observe the quantum-induced effects at a 

minimal length scale, is included in the 4-velocity space. The eight dimensions x
A 

in the manifold M8, which are 

the extended dimensions, are 
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   (   (   ) ̇ )                                        (6) 

 where    is the four spacetime dimensions (four-dimensional sub-manifold of the manifold   ),  ̇  
   

  
 is 

the four-velocity,          ,          ,   is the minimal length. Here,   may be defined according to 

Kempf’s GUP model as a minimal uncertainty of position, Eq. (5);        √  

 [26], or one can assume the value of minimal length to be the Planck length,        √(     ).  

 

The geometrical embedding previously described will be viewed in the context of this paper’s primary goal 

as merely a formal process to create a new metric  ̃   from a given metric    . This new metric differs from     

by a correction (deformation) factor, which will be elaborated below. 

The deformed line element (  ̃ ) with metric (   ) in the eight-dimensional manifold    [24, 32] is thereby 

given by,   

          ̃       
                            (7) 

 where     is a result of the outer product as the following 

                    . 

In Eq. (7), we substitute for    , and     by the differential form of Eq.(6)   

  ̃  (      
   

  

  ̇ 

  
     

  ̇ 

  

   

  
                      

  ̇ 

  

  ̇ 

  
)                            (8)            

 where    ,          
     is the classical line element,   

  ̃            ̈
  ̈    ,                        (9) 

 where  ̈  
  ̇ 

  
 is the acceleration of the particle,  ,   are dummy indices, and  ⃗̇  ⃗̇    , then  ⃗̇  ⃗̈   ,   

  ̃  (     ̈ )                                        (10) 

 where  ̈      ̈
  ̈ . The deformed line element in four dimensions spacetime, as a projection from eight 

dimensions into four dimensions, will be   

  ̃   ̃    
                                          (11) 

 where  ̃   is the deformed (modified) metric tensor. 

The deformed metric tensor  ̃   is the quantum-induced metric of the spacetime hypersurface embedded in the 

extended manifold   . The relation between the deformed metric tensor and the classical metric tensor will be 

obtained by equating Eqs. (10), and (11),   

 ̃   (   
  ̈ )                                          (12) 

 where  ̈      ̈
  ̈ ,  ,   are dummy indices,  , and   are free indices. For flat spacetime,   

 ̃   (   
  ̈ )                                         (13)  

The relation between the correction factor (     ̈ ) and GUP can be derived by substituting for   from Eq. 

(12) by Eq. (5),   

 ̃   (    ̈
 )                                                (14) 

 where      . 

 

B. Quantum-mechanical aspects imposed on the stress-energy tensor  

 

    The full action of the theory of general relativity in curved spacetime consists of the Einstein-Hilbert action 

and the non-gravitational part of the Lagrangian density        ; the matter field. This is done by substituting the 

ordinary derivative   with the covariant derivatives   and the Minkowski metric tensor     with the fundamental 

(metric) tensor    .   
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  ∫  
  

    
(         )√    

            (15) 

 

where Ricci scalar is denoted by  . Assuming that the Lagrangian density is scalar, the Jacobian term √   

√    (   ), which is obtained in section IIA, ensures action invariance under diffeomorphisms. Demanding 

vanishing variation of this action about the inverse metric tensor g
µν 

yields the physical quantities, including the 

Hilbert stress-energy tensor. [33] 

     
  

√    

 

    
(√           )    

        

    
               (16) 

where |g| = |det(gµν)|. The matter field and the fundamental tensor are the sole features that characterize Tµν. It is 

possible to rewrite the stress-energy tensor, Eq. (16), using the quantum-induced metric tensor, Eq. (14). 

 ̃     
  ̃      

  ̃  
  ̃   ̃                               (17)    

The quantum-induced version of the matter Lagrangian is derived in section IIC. For now, we start with that of 

the metric (fundamental) tensor 

  ̃   (     ̈  )        

               (       ̈  )       (    ̈  ̈ )  

 For  ̃   (     ̈  )      and   ̈       ̈  ̈ ,   

  ̃   (     ̈  )       (     ̈  )    [  ̈           ̈   ̈   
   ̈   ̈ ]         (18) 

where  ̈      ̈ ,  ̈      ̈ . Then, Eq. (18) can be substituted into Eq. (17). When replacing the small 

variation by differentiation and  ̃   by    , then, the quantum-induced stress-energy tensor is given so far as   

 ̃   
  (     ̈  ) 

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 

    
)

  ̃ 
    

 

                      (      ̈  )    ̃                          (19) 

When comparing Eq. (19) with Eq. (17), we conclude that   

    • both common terms, Eq. (18), are entirely retrieved, and  

    • both of them are multiplied by coefficients that differ from unity.  

 These coefficients depend on quantum-mechanical quantities such as   , the classical metric tensor, and the 

variation of the first-order derivatives of tangent covectors   ̈   with respect to the classical metric tensor. 

According to the quantum-induced correction suggested, finite    and/or   ̈  , linearly factor Eq. (19). When this 

factor is removed, the classical stress-energy tensor, Eq. (17), is entirely restored. Thus, we conclude that the 

corrected stress-energy tensor suggested in Eq. (19) is valid in both classical and quantum regimes. We also 

conclude that by switching    (and/or   ̈  ) off or on, classical or quantum stress-energy tensor is fully 

constructed. Such a linear factorization suggests a generalization of the stress-energy tensor because of the 

complementary term added to the fundamental tensor, Eq. (14). 

 

C. Quantum-induced matter Lagrangian density 

The generalized Lagrangian density is expressed as [34], 

 (    ̇ )  
 

 
∑   
        ( ) ̇

  ̇   (  )            (20) 

 where    are the generalized coordinates on manifold    and  ̇  represent phase-space velocities on tangent 

bundle    . 

For any type of matter field ψ(x) in any rank, either scalar, vector, tensor or ···, where ∂λ ψ(x) is the first partial 

derivative of the fields and ∂λ gµν(x) is the first partial derivative of the metric tensor gµν, the matter Lagrangian 

density is then given as [35] 

        ( ( )    ( )      ( )      ( )  )                      (21) 
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 It is apparent that a quantum-induced correction of         can be straightforwardly obtained when replacing 

    by  ̃  , Eq. (14), which in turn is based on the minimal length uncertainty, and thereby on the possible 

quantum-induced corrections of the spacetime geometrical objects near the fundamental scales,   

  ̃      ( ( )    ( )    ̃  ( )    ̃  ( )  )                                                                  (22) 

 In this regard, we focus on two physical examples:   

• Electromagnetic field in curved spacetime [36] 

     
 

 
                                                 (23)                          

where               is the Faraday tensor, with    is four-gradient and    is four-potential. For quantum-

induced metric tensor, Eq. (14), Eq. (23) can be rewritten as   

 ̃    
 

 
 ̃   ̃         

                              
 

 
(     ̈  )               

                             (     ̈  )                    (24) 

 

Also here, for vanishing    and/or   ̈  , the classical     can be fully retrieved. 

• Klein Gordon field (scalar field) in curved spacetime [37], 

    
 

 
           ( )                       (25) 

 where   is the scalar field and  ( ) is the potential field. When replacing     by  ̃  , Eq. (14), we get the 

quantum-induced version of the Klein-Gordon Lagrangian density  

  ̃   
 

 
 ̃          ( ) 

          
 

 
(     ̈  )             ( )                                                                  (26) 

 By substituting  
 

 
          from Eq. (25), the quantum-induced scalar Lagrangian density reads   

 ̃  
 

     ̈  
[      ̈ 

  ( )]                       (27) 

 For vanishing    and/or   ̈  , the classical scalar Lagrangian density    is straightforwardly obtained.  

 

D. Quantum-induced stress-energy tensor with EM Lagrangian density 

 

For now, Eq. (24) could be substituted into Eq. (19). Then, the quantum-induced stress-energy tensor with EM 

Lagrangian density reads   

 

 ̃   
  

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 

    
)

    
    

 

  
  ( ̈  ̈   ̈

   ̈ 

    
  ̈ 

  ̈ 
    

)

(     ̈  )[      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)]
    

  
   

(     ̈  )
                                         (28) 

 By substituting Eq. (16) into Eq. (28), we get   

 ̃   
 

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 

    
)
(          ) 
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  ( ̈  ̈   ̈

   ̈ 

    
  ̈ 

  ̈ 
    

)

(     ̈  )[      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)]
    

  
   

(     ̈  )
                                         (29) 

 For        
    

 

 
(          ), Eq. (29) can be rewritten as   

 ̃   0    
  . ̈ 

  ̈ 

    
  ̈ 

  ̈ 
    

/1

  

     

 0      . ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

/1

  

         

         
  ( ̈  ̈   ̈

   ̈ 

    
  ̈ 

  ̈ 
    

)

(     ̈  )[      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)]
    

     
   

(     ̈  )
                                        (30) 

 

It is noteworthy to highlight that the first line of Eq. (30) gives the classical stress-energy tensor     multiplied 

by a coefficient depending on quantum mechanical quantities including   , gravitational quantities including the 

first-order derivatives of the tangent covectors  ̈, and the derivatives of  ̈ with respect to    . The second, third, 

and fourth lines of Eq. (30) refer to the electromagnetic Lagrangian density in curved spacetime multiplied by 

different coefficients depending on  ̈ and its derivatives with respect to    . Last but not least, at vanishing    

and/or   ̈  , the entire    -contributions outlined in the second, third, and fourth lines of Eq. (30), vanish due to 

their vanishing coefficients. Also, at vanishing    and/or   ̈  , the coefficient of     in the first line of of Eq. (30) 

becomes unity, so that  ̃       is fully regained. 

Furthermore by substituting Eq. (24) into Eq. (30),  ̃   can be simplified to   

 ̃   0    
  . ̈ 

  ̈ 

    
  ̈ 

  ̈ 
    

/1

  

 

{    (     ̈ 
 ) [  ̈        

  ̈  

   
                  ( ̈ 

  ̈ 

    
  ̈ 

  ̈ 

    
)]    }                   (31) 

 from which we conclude that the quantum-induced version of the stress-energy tensor with EM Lagrangian 

density is achieved through   

    • a linear factorization to     itself and  

    • a simultaneous emergence of     contributions.  

 The latter are also linearly factorized with quantities depending on   ,   ̈  ,    ̈  ,    , and variations of the 

first-order derivatives of tangent covectors with respect to    . Whether the     contributions are subtracted or 

added to     depends on the coefficients inside the squared brackets in front of    . To remain within the scope 

of the present paper, the nature and significance of all these quantum-induced corrections could be studied 

elsewhere. 

1.  Symmetry property of quantum-induced stress-energy tensor with EM Lagrangian 

  

Given the symmetry of     and by exchanging the covariant indices   and   of Eq. (31), we get  

  ̃   *    
  ( ̈ 

  ̈ 

    
  ̈ 

  ̈ 

    
)+
  

 

             {    (     ̈ 
 ) [      ̈ 

      ̈  
 

   
   ( ̈ 

  ̈ 

    
  ̈ 

  ̈ 

    
)]    }        (32) 

 

 Similarly, from the symmetry of the metric tensor         and its inverse        ,   



QUANTUM-INDUCED STRESS-ENERGY TENSOR IN THE RELATIVISTIC REGIME 

Egypt. J. Phys. Vol. 53 (2025) 

7 

 ̃   0    
  . ̈ 

  ̈ 

    
  ̈ 

  ̈ 
    

/1

  

 

   {    (     ̈ 
 ) [      ̈ 

                      ̈  
 

   
   ( ̈ 

  ̈ 

    
  ̈ 

  ̈ 

    
)]    } 

   ̃                                         (33) 

 

 Thus, we conclude that similar to the classical stress-energy tensor [38], the quantum-induced version of the 

stress-energy tensor outlined in Eq. (31) is also symmetric under the exchange of the lower indices. 

 

2. Covariant derivative of quantum-induced stress-energy tensor with EM Lagrangian 

  

 Because the covariant derivative of a tensor in one frame is the same in all other frames, for the sack of 

consistency, we need to investigate whether this applies to quantum-induced stress-energy tensors. For this 

purpose and for the sake of simplicity, we derive the covariant derivative of the stress-energy tensor with 

electromagnetic Lagrangian density in the free-falling frame. As the Faraday tensor is antisymmetric, i.e., 

        , the covariant and partial derivatives are the same. Thus, Eq. (30) can be expressed as   

 ̃              
   ̈  ̈     

(     ̈  )
                   (34) 

 With 
  ̈ 

    
 

  ̈ 

    
   and by replacing     with    , then the covariant derivative reads   

   ̃     
 (      )   

 *
   ̈  ̈     

(     ̈  )
   +   (35) 

 because       locally vanishes. Eq. (35) leads to   

   ̃        
     *

   ̈  ̈     

(     ̈  )
+       *

(     ̈  )(   ̈  
  ̈     ̈  

  ̈ )

(     ̈  ) 
+                            (36) 

 where (  ̈  )         ̈
  ̈   ,              ,    ̈   ̈     , and    ̈ . Then,   

   ̃   ,*
    ̈      

(     ̈  )
+     -  

                       (37) 

 So far, we conclude that    ̃   results in the covariant derivative of the Lagrangian density multiplied by 

coefficients depending on the metric tensor,   ,   ̈  , and  . If the quantization is removed by assigning zero to 

   and/or   ̈  ,    ̃   vanishes as well, even at finite      . The latter is defined in Eq. (23) in the free falling 

frame, for which   is to be replaced by  ,   

       
 

 
      (                 )         (38) 

 

Maxwell's theory of electromagnetism implies that    
      

  with    is the permeability of free space and 

   is four-current. From Eq. (37) and Eq. (38), we get   

   ̃   ,*
    ̈         

(     ̈  )
+                      - * 

 

 
      (                 )+     

                                                                               (39)                            

 where       (    
     )  

 and       (    
     )  

. So far, we have concluded that   

 • for classical stress-energy tensor, i.e., vanishing    and/or   ̈  , then   

    ̃                                    (40) 

 • for quantum-induced stress-energy tensor, i.e., finite    and/or   ̈  , in vacuum spacetime, i.e., vanishing four-

current, then   

    ̃                                    (41) 
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 as              . Otherwise,    ̃   is divergent! In that case, the Lagrangian density should be coupled to a 

charged particle as a source in the inhomogeneous Maxwell equations so that   

   ( ̃  
    ̃  

        
)            (42) 

  

 These results are logically consistent with the Noether theorem for translation [39] in that every symmetry in 

Nature implies a conservation law. The vanishing covariant derivative of the stress-energy tensor originated in 

special relativity, i.e.,        . Noether theorem is not the main reason for carrying this result over GR. This 

is straightforwardly based on the fact that GR and special relativity are locally the same, so in local frames, e.g., 

free-falling frame,        
      . 

 For now, we can also interpret vanishing    ̃   to be due to diffeomorphism invariance. As long as the metric 

tensor could not be associated with a Killing vector field, no conserved quantity could be related to    ̃   

        [38]. 

 

E. Quantum-induced stress-energy tensor with scalar Lagrangian density 

  

 For spacetime filled with scalar field and by substituting Eq. (26) into Eq. (19), the quantum-induced stress-

energy tensor can be expressed as   

 ̃   
  (     ̈  ) 

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 

    
)

 

    
[ 
 

 
(     ̈  )             ( )] 

  (     ̈  )   * 
 

 
(                                       ̈  )             ( )+    

                                                                (43)                           

 where  ̈      ̈  and  ̈      ̈ .   

 ̃   

 
 (     ̈  )

 

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)

   

    
       

 

 

 (     ̈  )
  
  ̈    (     ̈  )  

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)
( ̈ 

  ̈ 

    
  ̈ 

  ̈ 

    
)           

      ̈ 
   ( )              (44) 

 For vanishing    and/or   ̈  , the right-hand-side of Eq. (44) turns to express classical    , where the first line 

gets a unity factor, i.e., the entire coefficient (     ̈  )[      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 

    
)]    . Also, both the 

second and third lines entirely vanish. The nature and significance of the additional contributions associated with 

the quantum corrections, namely the second and third lines, shall be studied elsewhere. 

 

1.  Symmetry property of quantum-induced stress-energy tensor with scalar Lagrangian density 

  

By exchanging the indices   and  , Eq. (44) reads   

 ̃   

 
 (     ̈  )

 

      ( ̈ 
  ̈ 
    

  ̈ 
  ̈ 

    
)

   

    
       

 

 

 (     ̈  )
  
  ̈      ̈  (     ̈  )

  

      ( ̈ 
  ̈ 
    

  ̈ 
  ̈ 

    
)

( ̈ 
  ̈ 

    
  ̈ 

  ̈ 

    
)           

      ̈ 
   ( )               (45) 

 The symmetry property of         and         leads to   

 ̃    
 (     ̈  )

 

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)

   

    
 
 

 

 (     ̈  )
  
| ̈    | ̈  (     ̈  )

  

      ( ̈ 
  ̈ 

    
  ̈ 

  ̈ 
    

)
( ̈ 

  ̈ 

    
  ̈ 

  ̈ 

    
)           

      ̈ 
   ( )                     .                                                                             (46) 

 From Eqs. (45) and (46) we conclude that  ̃   with scalar Lagrangian fulfills the symmetry property. 
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2  Covariant derivative of quantum-induced stress-energy tensor with scalar Lagrangian 

  

 Again we recall that Noether theorem dictates that the differentiable symmetry is related to conservation laws in 

the underlying theory [39]. The differentiable symmetry is that of the action of a physical system defining the 

behavior of that system by the principle of least action. In section 2.5.1, we have shown that  ̃    ̃  . Thus, we 

categorically conclude that  ̃   fulfills the conservation laws, locally. 

 On the one hand, the angular momentum conservation is satisfied by the symmetry property of spacetime 

indices of the quantum-induced stress-energy tensor [40]. On the other hand, the energy-momentum 

conservation is fulfilled by vanishing covariant derivative of the stress-energy tensor with respect to the 

spacetime. The quantum-induced version of the stress-energy tensor introduced in the present study is defined 

from the Hilbert action,     . Vanishing variation of   refers to the diffeomorphism invariance property, i.e., 

the stress-energy tensor is also diffeomorphism invariant, and its covariant derivative leads to   

    ̃                                    (47) 

 i.e., the stress-energy tensor is not explicitly dependent on the coordinates   , i.e, its divergence is zero; it is 

locally conserved. 

III. Summary and Conclusion 

 

Several quantum gravity approaches lead to a minimal length scale scenario that is conjectured to integrate 

gravity in quantum mechanics through a generalized uncertainty principle (GUP), which is a generalization of 

the Heisenberg uncertainty principle and can be used to help incorporate the quantum effects of the gravitational 

interaction on the spacetime geometry near the minimal scale of the length at which such effects are expected to 

become important. The principal geometric objects of the classical representation of spacetime geometry in the 

classical theory of general relativity (GR) are eventually likely to become deformed or modified. 

In the present paper, the minimal measurable length scale L is taken to be the minimal uncertainty of distance 

∆x0 in Kempf’s GUP model [26], which enables the quantum-induced deformation of geometrical structures on 

spacetime manifold M. In a recent paper [25], we used the recipe that was first proposed by Caianiello [41] and 

later developed by Brandt [24] to calculate the quantum-induced fundamental (metric) tensor. In a more recent 

work [22], we pursued the same reasoning and calculated the quantum-corrected Levi-Civita connection and the 

Reimann curvature tensor. 

Unlike the approaches by Caianiello [23] and Brandt [24], our method is independent of any particle mass 

scale. It expresses a minimal length scale, which can be naturally related to a maximal acceleration scale by 

some quantum deformation parameter and/or basic physical constants, depending on which minimal length scale 

is chosen. Additionally, our method relies on observers for the metric and other geometric objects. It is therefore 

not essential to employ a universal length scale or mass scale to define the minimum length (or maximum 

acceleration). In other words, our approach assumes that barring phenomenological constraints, we do not need 

to identify the minimum length scale to be precisely Planck scale. 

Through the minimal length uncertainty and the additional curvature imposed on the 8-dimensional tangent 

bundle (phase-space), the quantum effects of the gravitational fields can be embedded in the four-dimensional 

classical pseudo-Riemann manifold of GR. The most general geometric length measure for curves is thereby 

assured, especially when relaxing invariance under local Lorentz transformation. The generalized (quantum-

induced) fundamental (metric) 

tensor is determined, (√     √  ) ̇
 )  on the tangent bundle. To summarize, GR is assumed to be quantum-

corrected near some minimum (fundamental) length scale. Therefore, the main geometrical elements of the 

classical theory of general relativity, including the stress-energy tensor, are eventually anticipated to become 

deformed or corrected. The quantum-induced version of the stress-energy tensor is constructed through a 

complementary term reconciling the principles of QM and GR and comprising generalized noncommutative 

Heisenberg algebra. 

As we showed in the first line of Eq. (30), the quantum-induced stress-energy tensor is given by the classical 

stress-energy tensor Tµν multiplied by a coefficient depending on quantum mechanical and gravitational 

quantities including the derivative of the tangent convectors  ̈ 1 
and the derivatives of  ̈ with respect to gµν. The 

——— 
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second, third, and fourth lines of Eq. (30) refer to the electromagnetic Lagrangian density in curved spacetime 

multiplied by different coefficients depending on  ̈ and its derivatives with respect to gµν. When β0 and/or | ̈|
2 

vanish, the entire    -contributions outlined in the second, third, and fourth lines of Eq. (30) vanish. Also, at 

vanishing β0 and/or   ̈  , the coefficient of Tµν in the first line becomes unity, so that  ̃       is fully restored. 

We also found that the quantum-induced version of the stress-energy tensor with EM lagrangian outlined in Eq. 

(31), like its classical counterpart, is also symmetric under the change of the two lower indices. The nature and 

significance of all these quantum-induced corrections could be studied elsewhere. 

We constructed the stress-energy tensor for Lagrangian density with electromagnetic and scalar fields. For 

both fields, the ‘quantization’ is realized through i) a linear factorization to the stress-energy tensor itself, and ii) 

simultaneous emergence of additional contributions of the Lagrangian densities. The latter are also linearly 

factorized with quantities depending on GUP parameter   , the second-order derivatives of tangent covectors 

  ̈  , the fundamental tensor    , and the derivatives of   ̈   with respect to    . 

We have shown that both quantum-induced stress-energy tensors with electromagnetic and scalar Lagrangian 

densities are symmetric in their covariant indices. For the quantum-induced stress-energy tensor with 

electromagnetic Lagrangian density in vacuum spacetime, we have derived the covariant derivative and 

categorically concluded its vanishing divergence. Otherwise, the Lagrangian density should be coupled with the 

matter source in the inhomogeneous Maxwell’s equation. For the quantum-induced stress-energy tensor with 

scalar Lagrangian density, the conclusion of the vanishing covariance derivative is based on the Noether theorem 

for translation that very symmetry implies conservation. 

Fortunately, the ‘quantization’ proposed in the present paper is linearly factorized to the classical stress-energy 

tensor. The classical version of the stress-energy tensor, Einstein GR’s version, is the basis and is always present. 

The quantum-corrected version appears as supplementary, which could be switched off. In both cases, the 

classical stress-energy tensor exists. On the other hand, the quantum correction comes up with coefficients, 

functions of quantum-mechanical and relativistic quantities, that differ from unity in front of the classical stress-

energy tensor, and also additional contributions from the Lagrangian densities and potentials. The latter have 

coefficients of quantum-mechanical and relativistic quantities. The nature and significance of all these 

coefficients and the additional Lagrangian densities and potentials shall be studied elsewhere. 

At the macroscopic level, where    , the modification (deformation) of the EM Lagrangian, EM stress-energy 

tensor, scalar field Lagrangian, and scalar field stress-energy tensor, vanishes, and their classical GR forms are 

restored. This ensures that such modifications have a quantum origin that manifests exclusively at the 

appropriate fundamental scales where    ̇  becomes significant. The extra curvature of the deformed manifold 

exists if and only if  ̇   , and it is entirely due to the proper acceleration of the test particle rather than any 

other matter or energy–momentum sources. 
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 على نظدم نسبوي وميةالندتج عن التأثيرات الكم والطدقة جهاد تنسور الإ

محمد مدهر
1

توفيق ر، عبد الندص
2

فوزي صلاح طرابية، 
1

فد ي طدرق فدروق، 
1
 

1
 يصشػٍُ حهىاٌ، انماهشة،  11792كهُت انؼهىو، جايؼت حهىاٌ، لضى انفُزَاء،  

2
 ، يصشانماهشة انجذَذة 11835جايؼت انًضخمبم فٍ يصش،  

 
  الملخص

يٍ  .َفشض انجبش انلاحبادنٍ انًؼًى نهُزَبشؽ، اصخُاداً إنً يبذأ ػذو انُمٍُ انًؼًى، حذاً أدًَ نؼذو انُمٍُ ػهً يُكاَُكا انكى 

)أسبؼت أبؼاد  انثًاَُه الأبؼاد ًٍثم اَحُاءً إضافُاً فَ انًؼًى ىيٍانكً انخاثُش انُاحج ػٍ انزيكاٌأٌ حؼذَم  َاحُت أخشي، َمُخشح

 نهحذود انكلاصُكُتيكًم  حذ جبشإضافٍ . َظهش هزا انخؼذَم ػهً شكمنهزيكاٌ انكلاصُكٍ و أسبؼت أبؼاد نفضاء انطىس(

. ٍ نًخجه انضشػتنوَشًم انحذ الأدًَ نهطىل والاشخمالاث يٍ انذسجت الأو يُكاَُكا انكى وانُضبُت انؼايت حإثُشاثَجًغ بٍُ 

وانطالت انًخًاثم، وانزٌ  جهادحؼذَم حُضىس الإحى انخانٍ يٍ الانخىاء. كزنك، انًؼذل  بُاءً ػهً رنك، ًَكٍ بُاء حُضىس انمُاس

انمُاصٍ. انًجال  انكهشويغُاطُضٍ وانًجال ، بالإضافت إنً كثافت انطالت انًشحبطت بلاجشاَچ ء انزيكاٌَؼُخبش يصذس اَحُا

، يغ يؼايلاث حؼخًذ ػهً طالاث جهذوانطالت، َخى إدخال كثافاث لاجشاَچ إضافُت و جهادضخت انكلاصُكُت نخُضىس الإبجاَب انُ

، وانثىابج انفُزَائُت انخٍ حشًم ثابج انجاربُت، وثابج بلاَك، وصشػت انضىء، لاث يخجه انضشػتحُضىس انمُاس، واشخما

َظشَت انُضبُت انؼايت لأَُشخاٍَ، ححمك يبادٌ يٍ  خأثُش انكًىيٍت انًؼذلّ بانوانطال جهادحُضىس الإق اشخماذ وطىل بلاَك. َأك

ُت وانؼكش بانؼكش. ىيػهً انًادة انكلاصُكُت وانكً بزل شغلاوَمخشح أٌ يؼادنت الاصخًشاسَت حشُش إنً أٌ حمىل انجاربُت ح

انخؼبُشاث انشَاضُت فٍ انطىل، َخى اصخؼادة  و/أو ػذو وجىد حذ أدًَ نؼذو انُمٍُ ًخجه انضشػتالأونً ن انًشخمت حلاشٍ ػُذ

انخمهُذَت بشكم كايم. بُاءً ػهً رنك، َخى أَضًا اصخشجاع  ىيُتًُكاَُكا انكًفٍ انانُضبُت انؼايت انكلاصُكُت و انًخؼاسف ػهُها فٍ

يٍ حُث انًبذأ نكم يٍ وانطالت انًؼذلّ انًمخشح يُاصب  الإجهادوانطالت لأَُشخاٍَ. نزنك، َضخُخج أٌ حُضىس الإجهادحُضىس 

 .ُت وانكلاصُكُتىييؼادلاث انحمىل انكً

، وانطالت الإجهادحُضىس انجاربُت انًؼذنت، يمُاس انطىل الأدًَ، يبذأ ػذو انُمٍُ انًؼًى، انُضبُت انؼايت،  الكلمدت الدالة:

 .انًؼذلانزيكاٍَ  فضاءان


